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One More Time:  Markov Birth and Death 
Queueing Systems
Central Limit Theorem
Monte Carlo Sampling from Distributions
‘Q&A’



Buy one, get the other 3 for free!
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Optional Exercise:
Is it “better’’ to enter a single 

server queue with service rate μ
or a 2-server queue each with rate 

μ /2?
Can someone draw one or both of the 

state-rate-transition diagrams?  
Then what do you do?



Final Example:  
Single Server, Discouraged Arrivals
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P0 = (eλ / μ )−1 = e−λ / μ > 0
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State-Rate-Transition Diagram, Discouraged Arrivals



P0 = (eλ / μ )−1 = e−λ / μ > 0
ρ = utilization factor =1− P0 =1− e−λ / μ <1.

Pk =
(λ /μ)k

k!
e−λ / μ ,    k = 0,1,2,... Poisson Distribution!

L = time - average number in system = λ/μ  How?
L = λAW      Little's Law, where
λA ≡ average rate of accepted arrivals into system



Apply Little’s Law to Service Facility

ρ = λA (average service time)
ρ = average number in service facility = λA /μ
λA = μρ = μ(1−e−λ / μ )

W =
L
λA

=
λ /μ

μ(1−e−λ / μ )
=

λ
μ2(1−e−λ / μ )
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Central Limit Theorem Demo
Thanks to Prof. Dan Frey! :) 
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One Uniformly Distributed Random Variable
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Sum of 2 iid Uniformly Distributed Random Variables
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Sum of 3 iid Uniformly Distributed Random Variables
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Sum of 4 iid Uniformly Distributed Random Variables
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Sum of 5 iid Uniformly Distributed Random Variables



It’s Movie Time!



The Gaussian or Normal PDF
1fY (y) =

σY 2π
e−{(y−E[y ])2 /(2σ 2

Y )}  - ∞ < y < ∞
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Central Limit Theorem

Consider the sum Sn of n iid random 
variables Xi, where  

Then, as n ‘’gets large,” Sn tends to a 
Gaussian or Normal distribution with 
mean equal to nmX and variance equal 
to          .

E[Xi] = mX < ∞

VAR[Xi] = σ X
2 < ∞

Sn = X1 + X2 + ...+ Xn = Xi
i=1

n

∑

nσ X
2



fSn
(y) =

1
σ X 2πn

e−{(y−nmX )2 /(2nσ X
2 )}  - ∞ < y < ∞

Sn = X1 + X2 + ...+ Xn = Xi
i=1

n
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Normalizing Random Variables

Suppose we have a r.v. W  having 
Mean = E[W ] = a   and
Variance = E[(W − a)2] = σW

2

Define a new r.v.
X ≡ W − a.  Then
E[X] = E[W − a] = E[W ]− a = a − a = 0
VAR[X] = VAR[W ] = σW

2



Normalizing Random Variables

Suppose we have a r.v. W  having 
Mean = E[W ] = a   and
Variance = E[(W − a)2] = σW

2

Define a new r.v.
X ≡ W − a.  Then
E[X] = E[W − a] = E[W ] − a = a − a = 0
VAR[X] = VAR[W ] = σW

2

Or suppose we define
Y ≡ γW .  Then
E[Y ] = γE[W ] = γa
σY

2 = E[(γW − γa)2] = γ 2E[(W − a)2] = γ 2σW
2



Normalizing Random Variables

Suppose we have a r.v. W  having 
Mean = E[W ] = a   and
Variance = E[(W − a)2] = σW

2

Thus, if we define
Z ≡ (W − a) /σW ,  then
E[Z] = 0
σ Z

2 =1
Z is called a normalized r.v.

Most table 
lookups of the 
Gaussian are via 
the CDF, with a 
normalized r.v.



Obtaining Samples of the 
Gaussian R.V.

In Monte Carlo simulations, one often 
uses the Central Limit Theorem (CLT) 
to approximate the Gaussian.  

Example 1: Erlang Order N for large 
N should be approximately “Gaussian”
Example 2: Sum and normalize 12 
uniforms over [0,1].  Good idea?



Let’s talk about Monte Carlo 
sampling: Inverse Method.

Uses CDF, and is Never Fail!
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Inverse Method Also Works for 
Continuous Random Variables
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Time to 
Buckle your 
Seatbelts!

http://www.census.gov/pubinfo/www/multimedia/img/seatbelt-lo.jpg



Example 3:  The “Relationships Method”

fX (x) = fY (x) =
1

2πσ
e−x 2 / 2σ 2

  − ∞ < x < ∞

X and Y are zero - mean independent Gaussian r.v.'s.

R ≡ X 2 + Y 2

FR (r) ≡ P{R ≤ r} = P{ X 2 + Y 2 ≤ r}

FR (r) =
1

2πσ 2∫∫ e−(x+y )2 / 2σ 2

dxdy

           circle of
           radius r



FR (r) =
1

2πσ 2∫∫ e−(x+y )2 / 2σ 2

dxdy

           circle of
           radius r

fR (ρ)dρ = dθρdρ
θ = 0

2π∫ 1
2πσ 2 e−ρ 2 / 2σ 2

=
ρ

σ 2 e−ρ 2 / 2σ 2

dρ,   ρ ≥ 0

fR (ρ) =
ρ

σ 2 e−ρ 2 / 2σ 2

,   ρ ≥ 0

A Rayleigh pdf
With parameter 1/σ



FR (ρ) ≡ P{R ≤ ρ} =1− e−ρ 2 / 2σ 2

,   ρ ≥ 0
R1 ≡ sample from a uniform pdf over [0,1]

R1 =1− e−ρ 2 / 2σ 2

,  which implies that

ρ = σ −2ln(1− R1)
θ = 2πR2

X = ρcosθ = σ −2ln(1− R1) cos(2πR2)

Y = ρ sinθ = σ −2ln(1− R1) sin(2πR2)

Here we have 2 exact samples 
from the Gaussian pdf, with no 
approximation from the CLT!



Spin the Flashlight

And, so, finite variance is just a 
professor’s oral exam trick 

question? :) 
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x axis
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Point of flashlight
illuminationθ
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1.  R.V.':  X, Θ
2.  Sample space for Θ:  [-π/2, π/2]



x axis

1
Point of flashlight
illuminationθ

x
1.  R.V.':  X, Θ
2.  Sample space for Θ:  [-π/2, π/2]
3.  Θ uniform over  [-π/2, π/2]



x axis

1
Point of flashlight
illuminationθ

x
1.  R.V.':  X, Θ
2.  Sample space for Θ:  [-π/2, π/2]
3.  Θ uniform over  [-π/2, π/2]
4. (a) FX(x) = P{X<x} = P{tanΘ<x}=P{Θ < tan-1(x)}= 1/2 + (1/π) tan-1(x)

(b) fX(x) =(d/dx) FX(x) = 1/(π)(1 + x2)    all x

Cauchy pdf Mean =?, Variance = ????
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