ESD.86. Queueing \& Transitions

Sampling from Distributions, Gauss

Richard C. Larson
March 12, 2007
Courtesy of Dr. Sam Savage, www.AnalyCorp.com. Used with permission.

Outline

- One More Time: Markov Birth and Death Queueing Systems
- Central Limit Theorem
- Monte Carlo Sampling from Distributions
- 'Q\&A'

Buy one, get the other 3 for free!

Optional Exercise:

Is it "better"' to enter a single server queue with service rate μ or a 2 -server queue each with rate $\mu / 2$?

Can someone draw one or both of the state-rate-transition diagrams?

Then what do you do?

Final Example:

Single Server, Discouraged Arrivals

State-Rate-Transition Diagram, Discouraged Arrivals

$$
P_{k}=\frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k} P_{0}
$$

$$
P_{0}=\left[1+\left(\frac{\lambda}{\mu}\right)+\frac{1}{2!}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{3!}\left(\frac{\lambda}{\mu}\right)^{3}+\ldots+\frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k}+\ldots\right]^{-1}
$$

$$
P_{0}=\left(e^{\lambda / \mu}\right)^{-1}=e^{-\lambda / \mu}>0
$$

$P_{0}=\left(e^{\lambda / \mu}\right)^{-1}=e^{-\lambda / \mu}>0$
$\rho=$ utilization factor $=1-P_{0}=1-e^{-\lambda / \mu}<1$.
$P_{k}=\frac{(\lambda / \mu)^{k}}{k!} e^{-\lambda / \mu}, \quad k=0,1,2, \ldots$ Poisson Distribution!
$L=$ time - average number in system $=\lambda / \mu$ How?
$L=\lambda_{A} W \quad$ Little's Law, where
$\lambda_{A} \equiv$ average rate of accepted arrivals into system

Apply Little's Law to Service Facility

$\rho=\lambda_{A}$ (average service time)
$\rho=$ average number in service facility $=\lambda_{A} / \mu$

$$
\lambda_{A}=\mu \rho=\mu\left(1-e^{-\lambda / \mu}\right)
$$

$$
W=\frac{L}{\lambda_{A}}=\frac{\lambda / \mu}{\mu\left(1-e^{-\lambda / \mu}\right)}=\frac{\lambda}{\mu^{2}\left(1-e^{-\lambda / \mu}\right)}
$$

Central Limit Theorem Demo Thanks to Prof. Dan Frey! :)

One Uniformly Distributed Random Variable

Sum of 2 iid Uniformly Distributed Random Variables

Sum of 3 iid Uniformly Distributed Random Variables

Sum of 4 iid Uniformly Distributed Random Variables

Sum of 5 iid Uniformly Distributed Random Variables

It’s Movie Time!

The Gaussian or Normal PDF

$$
f_{Y}(y)=\frac{1}{\sigma_{Y} \sqrt{2 \pi}} e^{-\left\{(y-E[y])^{2} /\left(2 \sigma_{Y}^{2}\right)\right\}} \quad-\infty<y<\infty
$$

Central Limit Theorem

Consider the sum S_{n} of n iid random variables X_{i}, where

$$
\begin{aligned}
& E\left[X_{i}\right]=m_{X}<\infty \\
& \operatorname{VAR}\left[X_{i}\right]=\sigma_{X}^{2}<\infty \\
& S_{n}=X_{1}+X_{2}+\ldots+X_{n}=\sum_{i=1}^{n} X_{i}
\end{aligned}
$$

Then, as n "'gets large," S_{n} tends to a Gaussian or Normal distribution with mean eqqual to $n m_{x}$ and variance equal to $n \sigma_{X}^{2}$.

$$
\begin{gathered}
S_{n}=X_{1}+X_{2}+\ldots+X_{n}=\sum_{i=1}^{n} X_{i} \\
f_{S_{n}}(y)=\frac{1}{\sigma_{X} \sqrt{2 \pi n}} e^{-\left\{\left(y-n m_{X}\right)^{2} /\left(2 n \sigma_{X}^{2}\right)\right\}} \quad-\infty<y<\infty
\end{gathered}
$$

Figure by MIT OCW.

Normalizing Random Variables

Suppose we have a r.v. W having
Mean $=E[W]=a$ and
Variance $=E\left[(W-a)^{2}\right]=\sigma_{W}^{2}$
Define a new r.v.
$X \equiv W-a$. Then
$E[X]=E[W-a]=E[W]-a=a-a=0$
$\operatorname{VAR}[X]=\operatorname{VAR}[W]=\sigma_{W}^{2}$

Normalizing Random Variables

Suppose we have a r.v. W having
Mean $=E[W]=a$ and
Variance $=E\left[(W-a)^{2}\right]=\sigma_{W}^{2}$
Define a new r.v.
$X \equiv W-a$. Then
$E[X]=E[W-a]=E[W]-a=a-a=0$
$\operatorname{VAR}[X]=\operatorname{VAR}[W]=\sigma_{W}^{2}$
Or suppose we define
$Y \equiv \gamma W$. Then
$E[Y]=\gamma E[W]=\gamma a$
$\sigma_{Y}^{2}=E\left[(\gamma W-\gamma a)^{2}\right]=\gamma^{2} E\left[(W-a)^{2}\right]=\gamma^{2} \sigma_{W}^{2}$

Normalizing Random Variables

Suppose we have a r.v. W having
Mean $=E[W]=a$ and
Variance $=E\left[(W-a)^{2}\right]=\sigma_{W}^{2}$
Thus, if we define
$Z \equiv(W-a) / \sigma_{W}$, then
$E[Z]=0$
$\sigma_{Z}^{2}=1$
Most table lookups of the Gaussian are via the CDF, with a normalized r.v.

Z is called a normalized r.v.

Obtaining Samples of the Gaussian R.V.

In Monte Carlo simulations, one often uses the Central Limit Theorem (CLT) to approximate the Gaussian.

Example 1: Erlang Order N for large N should be approximately "Gaussian"
Example 2: Sum and normalize 12 uniforms over [0,1]. Good idea?

Let's talk about Monte Carlo sampling: Inverse Method. Uses CDF, and is Never Fail!

Inverse Method Also Works for Continuous Random Variables

Time to Buckle your Seatbelts!

Example 3: The "Relationships Method"

$$
f_{X}(x)=f_{Y}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-x^{2} / 2 \sigma^{2}}-\infty<x<\infty
$$

X and Y are zero - mean independent Gaussian r.v.'s.

$$
\begin{aligned}
& R \equiv \sqrt{X^{2}+Y^{2}} \\
& F_{R}(r) \equiv P\{R \leq r\}=P\left\{\sqrt{X^{2}+Y^{2}} \leq r\right\} \\
& F_{R}(r)=\iint \frac{1}{2 \pi \sigma^{2}} e^{-(x+y)^{2} / 2 \sigma^{2}} d x d y \\
& \quad \text { circle of } \\
& \quad \text { radius } r
\end{aligned}
$$

$$
\begin{aligned}
F_{R}(r)= & \iint \frac{1}{2 \pi \sigma^{2}} e^{-(x+y)^{2} / 2 \sigma^{2}} d x d y \\
& \text { circle of } \\
& \text { radius } r
\end{aligned}
$$

$$
f_{R}(\rho) d \rho=\int_{\theta=0}^{2 \pi} d \theta \rho d \rho \frac{1}{2 \pi \sigma^{2}} e^{-\rho^{2} / 2 \sigma^{2}}=\frac{\rho}{\sigma^{2}} e^{-\rho^{2} / 2 \sigma^{2}} d \rho, \rho \geq 0
$$

A Rayleigh pdf
$f_{R}(\rho)=\frac{\rho}{\sigma^{2}} e^{-\rho^{2} / 2 \sigma^{2}}, \rho \geq 0$ With parameter $1 / \sigma$

$$
F_{R}(\rho) \equiv P\{R \leq \rho\}=1-e^{-\rho^{2} / 2 \sigma^{2}}, \rho \geq 0
$$

$R_{1} \equiv$ sample from a uniform pdf over [0,1]

$$
\begin{aligned}
& R_{1}=1-e^{-\rho^{2} / 2 \sigma^{2}}, \text { which implies that } \\
& \rho=\sigma \sqrt{-2 \ln \left(1-R_{1}\right)} \\
& \theta=2 \pi R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& X=\rho \cos \theta=\sigma \sqrt{-2 \ln \left(1-R_{1}\right)} \cos \left(2 \pi R_{2}\right) \\
& Y=\rho \sin \theta=\sigma \sqrt{-2 \ln \left(1-R_{1}\right)} \sin \left(2 \pi R_{2}\right)
\end{aligned}
$$

> Here we have 2 exact samples from the Gaussian pdf, with no approximation from the CLT!

Spin the Flashlight

And, so, finite variance is just a professor's oral exam trick question? :)

1. R.V.': X, Θ

2. R.V.': X, Θ
3. Sample space for Θ : $[-\pi / 2, \pi / 2]$

4. R.V.': X, Θ
5. Sample space for Θ : $[-\pi / 2, \pi / 2]$
6. Θ uniform over $[-\pi / 2, \pi / 2]$

1. R.V.': X, Θ

2. Sample space for Θ : $[-\pi / 2, \pi / 2]$
3. Θ uniform over $[-\pi / 2, \pi / 2]$
4. (a) $F_{X}(x)=\mathrm{P}\{X<x\}=\mathrm{P}\{\tan \Theta<x\}=\mathrm{P}\left\{\Theta<\tan ^{-1}(x)\right\}=1 / 2+(1 / \pi) \tan ^{-1}(x)$
(b) $f_{X}(x)=(d / d x) F_{X}(x)=1 /(\pi)\left(1+x^{2}\right)$ all x

Cauchy pdf
Mean =?, Variance = ????

