# ESD.86 Exam #2 Review

#### **Dan Frey**

Associate Professor of Mechanical Engineering and Engineering Systems



## Some Study Suggestions

- Review all the lecture notes
  - If there is a concept test, know the answer and WHY it's the right answer and WHY other answers are wrong
  - If there is a word you don't understand, look it up, talk to colleagues...
- Review the last two homeworks
  - For concepts, not details
- Review the reading assignments (April and May)
  - For concepts, not details
  - If there is a graph or table, make sure you can describe how to use it and the procedure by which it was made

### Suggested Resources (I would not emphasize this as much as the lecture notes and problem sets)

Wu and Hamada. *Experiments: Planning, Analysis and Parameter Design Optimization*. Chapters 4 and 5 are relevant. The "practical summaries" are good condensations of the main points. Many of the exercises are close to what you might find on the test. Many are not e.g. "prove that ..." or "find the defining words and resolution..."

*Problem Solvers: Statistics* (Research & Education Association) Solving lots of problems is good practice. There are books filled with problems and solutions. A large fraction of these involve lots of number crunching, these are fine to review but that's not the sort of question I intend to give. Many are conceptual or involve modest computations or estimation. Those are closer in style to what you can expect. There are many topics we didn't cover so you don't have to study them.

## Weibull's Derivation

Call  $P_n$  the probability that a chain will fail under a load of x

Let's define a cdf for *each* link meaning the link <u>will fail</u> at a load *X* less than or equal to *x* as  $P(X \le x) = F(x)$ 



If the chain does not fail, it's because all n links did not fail

If the *n* link strengths are probabilistically independent

$$1 - P_n = (1 - P)^n$$

Weibull, W., 1951, "A Statistical Distribution Function of Wide Applicability," J. of Appl. Mech.

### Some Terms Related to Estimation

- Consistent for any c  $\lim_{n \to \infty} P(|\hat{\theta} \theta| \ge c) = 0$  are
- Unbiased  $E(\hat{\theta}) = \theta$  MLEs are not always
- Minimum variance

$$\operatorname{var}(\widehat{\theta}) = \frac{1}{nE\left[\left(\frac{\partial \ln f(X)}{\partial \theta}\right)^2\right]}$$

MLEs are pretty close

## **Complex Distributions**



FIG. 4 LENGTH OF CYRTOIDEAE

Copyright © 1951 by ASME. Used with permission.





Copyright © 1951 by ASME. Used with permission.

Weibull, W., 1951,"A Statistical Distribution Function of Wide Applicability," J. of Appl. Mech.

## Looking for Further Evidence of Two Populations



Copyright © 1951 by ASME. Used with permission.

Clear evidence of bimodality in strength data

#### No evidence of bimodality in fatigue data



FIG. 7 FREQUENCY CURVE OF YIELD STRENGTH OF ST-37 STEP (Number of specimens versus yield strength in kg/mm<sup>2</sup>.)

Copyright © 1951 by ASME. Used with permission.

## **Reliability Terminology**

- Reliability function R(t) -- The probability that a product will continue to meet its specifications over a time interval
- Mean Time to Failure MTTF -- The average time T before a unit fails  $MTTF = \int R(t)dt$
- Instantaneous failure rate  $\lambda(t)$

 $\lambda(t) = \Pr(\text{System survives to } t + dt | \text{System survives to } t)$ 

$$R(t) = e^{-\int_0^t \lambda(\xi) d\xi}$$

## **Constant Failure Rates**

"When the system operating time is the MTBF, the reliability is 37%" - Blanchard and Fabrycky



## Fisher's Null Hypothesis Testing

- 1. Set up a statistical null hypothesis. The null need not be a nil hypothesis (i.e., zero difference).
- 2. Report the exact level of significance ... Do not use a conventional 5% level, and do not talk about accepting or rejecting hypotheses.
- 3. Use this procedure only if you know very little about the problem at hand.

## Gigernezer's Quiz

Suppose you have a treatment that you suspect may alter performance on a certain task. You compare the means of your control and experimental groups (say 20 subjects in each sample). Further, suppose you use a simple independent means *t*-test and your result is significant (t = 2.7, d.f. = 18, p = 0.01). Please mark each of the statements below as "true" or "false." ...

- 1. You have absolutely disproved the null hypothesis
- 2. You have found the probability of the null hypothesis being true.
- 3. You have absolutely proved your experimental hypothesis (that there is a difference between the population means).
- 4. You can deduce the probability of the experimental hypothesis being true.
- 5. You know, if you decide to reject the null hypothesis, the probability that you are making the wrong decision.
- 6. You have a reliable experimental finding in the sense that if, hypothetically, the experiment were repeated a great number of times, you would obtain a significant result on 99% of occasions.

- This Matlab code repreatedly generates and tests simulated "data"
- 20 "subjects" in the control and treatment groups
- Both normally distributed with the same mean
- How often will the *t*-test reject  $H_0$  ( $\alpha = 0.01$ )?

```
for i=1:1000
    control=random('Normal',0,1,1,20);
    trt=random('Normal',0,1,1,20);
    reject_null(i) = ttest2(control,trt,0.01);
end
mean(reject_null)
```

- 1)  $\sim$ 99% of the time
- 2)  $\sim 1\%$  of the time
- 3)  $\sim$ 50% of the time
- 4) None of the above

- This Matlab code repreatedly generates and tests simulated "data"
- 20 "subjects" in the control and treatment groups
- Both normally distributed with the <u>different means</u>
- How often will the *t*-test reject  $H_0$  ( $\alpha = 0.01$ )?

```
for i=1:1000
    control=random('Normal',0,1,1,200);
    trt= random('Normal',1,1,1,200);
    reject_null(i) = ttest2(control,trt,0.01);
end
mean(reject_null)
```

- 1)  $\sim$ 99% of the time
- 2)  $\sim 1\%$  of the time
- 3)  $\sim$ 50% of the time
- 4) None of the above

 How do "effect" and "alpha" affect the rate at which the *t*-test rejects H<sub>0</sub>?

```
effect=1;alpha=0.01;
for i=1:1000
    control=random('Normal',0,1,1,20);
    trt= random('Normal',effect,1,1,20);
    reject_null(i) = ttest2(control,trt,alpha);
end
mean(reject_null)
```

- a)  $\uparrow$  effect,  $\uparrow$  rejects
- b)  $\uparrow$  effect,  $\downarrow$  rejects
- C)  $\uparrow$  alpha,  $\uparrow$  rejects
- d)  $\uparrow$  alpha,  $\downarrow$  rejects

```
1) a&c
```

- 2) a&d
- 3) b&c
- 4) b&d

### NP Framework and Two Types of Error

- Set a critical value c of a test statistic T or else set the desired confidence level or "size" α
   or other confidence
- Observe data X
- Reject  $H_1$  if the test statistic  $T(X) \ge c$
- Probability of Type I Error The probability of  $T(X) \le c$  | H<sub>1</sub>

region (e.g. for "two-

tailed" tests)

- (i.e. the probability of rejecting  ${\rm H_1}$  given  ${\rm H_1}$  is true
- Probability of Type II Error The probability of  $T(X) \ge c$  |  $H_2$ 
  - (i.e. the probability of not rejecting  $\mathrm{H_{1}}$  given  $\mathrm{H_{2}}$  is true
- The *power* of a test is 1 probability of Type II Error
- In the N-P framework, power is <u>maximized</u> subject to Type I error being <u>set</u> to a fixed critical value c or of  $\alpha$

## Measures of Central Tendency

- Arithmetic mean – an unbiased estimate of  $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$   $\mu = E(x) = \int_{S} x f_{x}(x) dx$
- Median =  $\begin{cases} X_{\frac{n+1}{2}} \text{ if } n \text{ is odd} \\ \frac{1}{2} \left( X_{\frac{n}{2}} + X_{\frac{1+n}{2}} \right) \text{ if } n \text{ is even} \end{cases}$
- Mode The most frequently observed value in the sample

## **Confidence Intervals**

• Assuming a given distribution and a sample size *n* and a given value of the parameter  $\theta$  the 95% confidence interval from *U* to *V* is s.t. the estimate of the parameter  $\hat{\theta}$ 

$$\Pr(U < \hat{\theta} < V | \theta) = 95\%$$

• The confidence interval depends on the confidence level, the sample variance, and the sample size

## **Measures of Dispersion**

Population Variance

$$VAR(X) = \frac{1}{n} \sum_{i=1}^{n} \left( X_i - \overline{X} \right)^2$$

Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

- an unbiased estimate of  $\sigma^2 = E((x - E(x))^2)$ 

- $n^{th}$  central moment  $E((x-E(x))^n)$
- $n^{th}$  moment about m  $E((x-m)^n)$

## **Skewness and Kurtosis**

• Skewness  $E((x-E(x))^3)$ 



positively skewed distribution

• Kurtosis  $E((x-E(x))^4)$ 



positive kurtosis

## **Correlation Coefficient**

• Sample

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)S_X S_Y}$$

$$S_X^2 = \frac{1}{n-1}\sum_{i=1}^{n} (X_i - \overline{X})^2$$

• Which is an estimate of

$$\frac{E((x-E(x))(y-E(y)))}{\sigma_x\sigma_y}$$



Courtesy of American Statistical Association. Used with permission.

## What is Linear Regression?



- 2. Get a sample of data in pairs  $(X_i, Y_i)$ , i=1...n
- 3. Estimate the parameters of the model from the data

## The Method of Least Squares

Given a set of *n* data 8 points (x,y) pairs There exists a <u>unique</u> line  $\hat{y} = a + bx$ 6 5 that minimizes the 3 residual sum of squares 2  $(x_{17}, y_{17})$  $e_i = y_i - \hat{y}_i$ 0 0.2 0.9 0 1 0.3 04 0.5 0.6 07 08 0  $s_e^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2$ 

## Matlab Code for Regression

p = polyfit(x,Y,1)
y\_hat=polyval(p,x);
plot(x,y\_hat,'-','Color', 'g')



You are seeking to calibrate a load cell. You wish to determine the regression line relating voltage (in Volts) to force (in Newtons). What are the units of *a*, *b*,  $S_{xx}$ , and  $S_{xy}$  respectively?

- 1) N, N, N, and N
- 2) V, V, V<sup>2</sup>, and V<sup>2</sup>
- 3) V, V/N, N<sup>2</sup>, and VN
- 4) V/N, N, VN, and  $V^2$
- 5) None of the variables have units

### **Regression Curve vs Prediction Equation**



## Evaporation vs Air Velocity Hypothesis Tests

Air vel (cm Evap

| Air vel<br>(cm/sec) | Evap coeff.<br>(mm²/sec) |  |  |
|---------------------|--------------------------|--|--|
| 20                  | 0.18                     |  |  |
| 60                  | 0.37                     |  |  |
| 100                 | 0.35                     |  |  |
| 140                 | 0.78                     |  |  |
| 180                 | 0.56                     |  |  |
| 220                 | 0.75                     |  |  |
| 260                 | 1.18                     |  |  |
| 300                 | 1.36                     |  |  |
| 340                 | 1.17                     |  |  |
| 380                 | 1.65                     |  |  |

| ff. (mm2/sec) |                       |              |            |            |          |            |            |            |            |                                         |
|---------------|-----------------------|--------------|------------|------------|----------|------------|------------|------------|------------|-----------------------------------------|
| 3             | SUMMARY OUTPUT        |              |            |            |          |            |            |            |            |                                         |
| 7             |                       |              |            |            |          |            |            |            |            | X Variable 1 Residual Plot              |
| 5             | Regression Statistics |              |            |            |          |            |            |            |            |                                         |
| 3             | Multiple R            | 0.934165     |            |            |          |            |            |            |            | 0.4 T                                   |
| 6             | R Square              | 0.872665     |            |            |          |            |            |            |            |                                         |
|               | Adjusted R Square     | 0.854474     |            |            |          |            |            |            |            |                                         |
|               | Standard Error        | 0.159551     |            |            |          |            |            |            |            | 200 300 40                              |
|               | Observations          | 9            |            |            |          |            |            |            |            | -0.4                                    |
|               |                       |              |            |            |          |            |            |            |            | X Variable 1                            |
|               | ANOVA                 |              |            |            |          |            |            |            |            |                                         |
|               |                       | df           | SS         | MS         | F        | gnificance | F          |            |            |                                         |
|               | Regression            | 1            | 1.221227   | 1.221227   | 47.97306 | 0.000226   |            |            |            |                                         |
|               | Residual              | 7            | 0.178196   | 0.025457   |          |            |            |            |            | X Variable 1 Line Fit Plot              |
|               | Total                 | 8            | 1.399422   |            |          |            |            |            |            |                                         |
|               |                       |              |            |            |          |            |            |            |            | 15 -                                    |
|               |                       | Coefficients | andard Err | t Stat     | P-value  | Lower 95%  | Upper 95%  | ower 95.0% | pper 95.0% | • 1 • • • • • • • • • • • • • • • • • • |
|               | Intercept             | 0.102444     | 0.106865   | 0.958637   | 0.369673 | -0.15025   | 0.355139   | -0.15025   | 0.355139   | 0.5                                     |
|               | X Variable 1          | 0.003567     | 0.000515   | 6.926259   | 0.000226 | 0.002349   | 0.004784   | 0.002349   | 0.004784   |                                         |
|               |                       |              |            |            |          |            |            |            |            | 0 100 200 300 400                       |
|               |                       |              |            |            |          |            |            |            |            | X Variable 1                            |
|               |                       |              |            |            |          |            |            |            |            |                                         |
|               | RESIDUAL OUTPUT       |              |            |            |          | PROBABI    | LITY OUTPI | Л          |            |                                         |
|               |                       |              |            |            |          |            |            |            |            | Normal Probability Plot                 |
|               | Observation           | Predicted \  | Residuals  | dard Resid | luals    | Percentile | Y          |            |            |                                         |
|               | 1                     | 0.173778     | 0.006222   | 0.041691   |          | 5.555556   | 0.18       |            |            |                                         |
|               | 2                     | 0.316444     | 0.053556   | 0.35884    |          | 16.66667   | 0.35       |            |            | 1.6 T                                   |
|               | 3                     | 0.459111     | -0.10911   | -0.73108   |          | 27.77778   | 0.37       |            |            | 1.4 +                                   |
|               | 4                     | 0.601778     | 0.178222   | 1.194149   |          | 38.88889   | 0.56       |            |            | 1.2 + •                                 |
|               | 5                     | 0.744444     | -0.18444   | -1.23584   |          | 50         | 0.75       |            |            | 1 +                                     |
|               | 6                     | 0.887111     | -0.13711   | -0.91869   |          | 61.11111   | 0.78       |            |            | > 08 -                                  |
|               | 7                     | 1.029778     | 0.150222   | 1.006539   |          | 72.22222   | 1.17       |            |            |                                         |
|               | 8                     | 1.172444     | 0.187556   | 1.256685   |          | 83.33333   | 1.18       |            |            | •                                       |
|               | 9                     | 1.315111     | -0.14511   | -0.97229   |          | 94.44444   | 1.36       |            |            | 0.4                                     |
|               |                       |              |            |            |          |            |            |            |            | 0.2 + •                                 |
|               |                       |              |            |            |          |            |            |            |            | 0++++++++++++++++++++++++++++++++++++++ |
|               |                       |              |            |            |          |            |            |            |            | 0 20 40 60 80                           |
|               |                       |              |            |            |          |            |            |            |            | Sample Percentile                       |
|               |                       |              |            |            |          |            |            |            |            | Gample Fercentile                       |
|               |                       |              |            |            |          |            |            |            |            |                                         |

# **Bayes'** Theorem $\Pr(A|B) \equiv \frac{\Pr(A \cap B)}{\Pr(B)}$ U B $\Pr(B|A) \equiv \frac{\Pr(A \cap B)}{\Pr(A)}$ $A \cap B$ with a bit of algebra $\Pr(A|B) = \frac{\Pr(A)\Pr(B|A)}{\Pr(B)}$

### **False Discovery Rates**

Image removed due to copyright restrictions.

Source: Figure 2 in Efron, Bradley. "Modern Science and the Bayesian-Frequentist Controversy." http://www-stat.stanford.edu/~brad/papers/NEW-ModSci\_2005.pdf

## Single Factor Experiments

- A single experimental factor is varied
- The parameter takes on various levels



treatment *i* 

↑ experimental factor

Fiber strength in lb/in<sup>2</sup>

## **Breakdown of Sum Squares**





## What is a "Degree of Freedom"?

• How many scalar values are needed to unambiguously describe the state of this object?

• What if I were to fix the x position of a corner?

## What is a "Degree of Freedom"?

 How many scalar values are needed to unambiguously describe the outcome o this experiment?

|            | Observations |    |    |    |    |  |  |  |  |
|------------|--------------|----|----|----|----|--|--|--|--|
| Cotton     |              |    |    |    |    |  |  |  |  |
| weight     |              |    |    |    |    |  |  |  |  |
| percentage | 1            | 2  | 3  | 4  | 5  |  |  |  |  |
| 15         | 7            | 7  | 15 | 11 | 9  |  |  |  |  |
| 20         | 12           | 17 | 12 | 18 | 18 |  |  |  |  |
| 25         | 14           | 18 | 18 | 19 | 19 |  |  |  |  |
| 30         | 19           | 25 | 22 | 19 | 23 |  |  |  |  |
| 35         | 7            | 10 | 11 | 15 | 11 |  |  |  |  |

- What if I were to tell you  $\overline{y}_{..}$ ?
- What if I were to tell you  $\overline{y}_{i}$  i = 1...4 ?

### Adding h.o.t. to the Model Equation



# Breakdown of Sum Squares





Estimation of the Error Variance  $\sigma^2$ Remember the the model equation  $\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$ 

If assumptions of the model equation hold, then

$$E(SS_E/(n-k-1)) = \sigma^2$$

So an **unbiased** estimate of  $\sigma^2$  is

$$\hat{\sigma}^2 = SS_E / (n - k - 1)$$

### **Test for Significance Individual Coefficients**

The hypotheses are

$$H_0: \beta_j = 0$$

$$H_1: \boldsymbol{\beta}_j \neq 0$$

The test statistic is

## **Factorial Experiments**

#### **Cuboidal Representation**



Exhaustive search of the space of discrete 2-level factors is the full factorial 2<sup>3</sup> experimental design

## **Adding Center Points**



Center points allow an experimenter to check for curvature and, if replicated, allow for an estimate of pure experimental error

## **Concept Test**

You perform a linear regression of 100 data points (*n*=100). There are two independent variables *x<sub>1</sub>* and *x<sub>2</sub>*. The regression *R*<sup>2</sup> is 0.72. Both β<sub>1</sub> and β<sub>2</sub> pass a *t* test for significance. You decide to add the interaction *x<sub>1</sub>x<sub>2</sub>* to the model. Select <u>all</u> the things that <u>cannot</u> happen:

- 1) Absolute value of  $\beta_1$  decreases
- 2)  $\beta_1$  changes sign
- 3)  $R^2$  decreases
- 4)  $\beta_1$  fails the *t* test for significance

## Screening Design

Image removed due to copyright restrictions. TABLE 2: Design I: Layout and Data for  $2_{IV}^{8-4}$  Screening Design in Box and Liu, 1999.

- What is the objective of screening?
- What is special about this matrix of 1s and -1s?

## Analysis of Variance

Image removed due to copyright restrictions. TABLE 10: Design III: Analysis of Variance for Completed Composite Design in Box and Liu, 1999.

- What would you conclude about lack of fit?
- What is being used as the denominator of F?

Say the independent experimental error of observations (*a*), (*ab*), et cetera is  $\sigma_{\varepsilon}$ .

We define the main effect estimate *A* to be

1



$$A = \frac{1}{4} \left[ (abc) + (ab) + (ac) + (a) - (b) - (c) - (bc) - (1) \right]$$

What is the standard deviation of the main effect estimate A?

1) 
$$\sigma_A = \frac{1}{2}\sqrt{2}\sigma_{\varepsilon}$$
 2)  $\sigma_A = \frac{1}{4}\sigma_{\varepsilon}$  3)  $\sigma_A = \sqrt{8}\sigma_{\varepsilon}$  4)  $\sigma_A = \sigma_{\varepsilon}$ 

## **Three Level Factors**



12 edges + 6 faces + 1 center = 27 points

## **Factor Effect Plots**





## **Concept Test**



If there are no interactions in this system, then the factor effect plot from this design could look like:



## **Concept Test**

 A bracket holds a component as shown. The dimensions are <u>strongly correlated</u> random variables with standard deviations as noted. Approximately what is the standard deviation of the gap?



## Monte Carlo Simulations What are They Good at?

Accuracy 
$$\propto \frac{1}{\sqrt{N}}$$
 N =#Trials

- Above formulae apply regardless of dimension
- So, Monte Carlo is good for:
  - Rough approximations or
  - Simulations that run quickly
  - Even if the system has many random variables

Fishman, George S., 1996, Monte Carlo: Concepts, Algorithms, and Applications, Springer.

## Sampling Techniques for Computer Experiments



Random Sampling Stratified Sampling

Latin Hypercube Sampling

## Errors in Scientific Software

- Experiment T1
  - Statically measured errors in code
  - Cases drawn from many industries
  - ~10 serious faults per 1000 lines of commercially available code
- Experiment T2
  - Several independent implementations of the same code on the same input data
  - One application studied in depth (seismic data processing)
  - Agreement of 1 or 2 significant figures on average

Hatton, Les, 1997, "The T Experiments: Errors in Scientific Software", *IEEE Computational Science and Engineering*.

## Next Steps

- Monday 7 May Frey at NSF
- Wednesday 9 May Exam #2
- Wed and Fri, May 14 and 16

- Final project presentations