
6.S096 Lecture 8 – Project Environments
Iterators, N-Body Problem, Setup

Andre Kessler

Andre Kessler 6.S096 Lecture 8 – Project Environments 1 / 41

Outline

1 Assignment 3 - Recap

2 Final Project (nbody)

3 Unit Testing

4 Wrap-up

Andre Kessler 6.S096 Lecture 8 – Project Environments 2 / 41

Assignment 3 - Recap

Sample Solution

class List {

size_t _length;

ListNode *_begin, *_back;

public:

class iterator {

friend class List;

ListNode *_node;

public:

iterator(ListNode *theNode);

iterator& operator++();

int& operator*();

bool operator==(const iterator &rhs);

bool operator!=(const iterator &rhs);

}; // ...etc

Andre Kessler 6.S096 Lecture 8 – Project Environments 3 / 41

Assignment 3 - Recap

Sample Solution

iterator begin();

iterator back();

iterator end();

Iterators allow us to write a fast reduce function like this:

int ReduceFunction::reduce(const List &lis) const {

int result = identity();

for(auto it = lis.begin(); it != lis.end(); ++it) {

result = function(result, *it);

}

return result;

}

Andre Kessler 6.S096 Lecture 8 – Project Environments 4 / 41

Assignment 3 - Recap

Iterator Implementation

List::iterator::iterator(ListNode *theNode) :

_node{theNode} {}

List::iterator& List::iterator::operator++() {

_node = _node->next();

return *this;

}

int& List::iterator::operator*() {

return _node->value();

}

Andre Kessler 6.S096 Lecture 8 – Project Environments 5 / 41

Assignment 3 - Recap

Const Iterator Implementation

List::const_iterator::const_iterator(ListNode *p) :

_node{p} {}

List::const_iterator&

List::const_iterator::operator++() {

_node = _node->next();

return *this;

}

const int& List::const_iterator::operator*() {

return _node->value();

}

Andre Kessler 6.S096 Lecture 8 – Project Environments 6 / 41

Assignment 3 - Recap

More in the code...

Let’s look into the code...

Andre Kessler 6.S096 Lecture 8 – Project Environments 7 / 41

Final Project (nbody)

Final Project

Groups of 2-4 people; 3 recommended

Andre Kessler 6.S096 Lecture 8 – Project Environments 8 / 41

Final Project (nbody)

N-Body Gravity Simulation

The Problem

Have N point masses with initial positions ri , velocities vi , accelerations
ai , and masses mi . Compute all-pairs forces

Gm
Fij = − imj

(r
|ri − rj |

i3
− rj)

and update the locations.

Andre Kessler 6.S096 Lecture 8 – Project Environments 9 / 41

Final Project (nbody)

Most basic integrator

void System::integrateSystem(float dt) {

Vector3f r, v, a;

for(size_t i = 0; i < _nBodies; ++i) {

r = _body[i].position();

v = _body[i].velocity();

a = _body[i].acc();

v = v + (a * dt);

r = r + v * dt;

_body[i].position() = r;

_body[i].velocity() = v;

}

}

Andre Kessler 6.S096 Lecture 8 – Project Environments 10 / 41

Final Project (nbody)

Components

Requirements

25% Physics Engine - quality and extensibility of simulation code

25% Visualization - OpenGL; getting a good visualization working

15% Unit testing - gtest, quality and coverage of tests

15% Software Process - code reviews, overall integration of project

10% Interactive - user interactivity with simulation (keyboard, mouse, etc)

10% Do something cool - make it look cool, add a useful feature, do
something interesting!

Extra 5% available in all areas for exceptional effort.

Andre Kessler 6.S096 Lecture 8 – Project Environments 11 / 41

Final Project (nbody)

“Do Something Cool”

Just a few examples of potential areas:

Advanced OpenGL

Threading with <thread>

Parallelize with OpenMP

More interactive (other forms of input)

Andre Kessler 6.S096 Lecture 8 – Project Environments 12 / 41

Final Project (nbody)

Physics Engine

You should be producing a library called libnbody.a. The only strict
requirement is that you will wrap all of your code in a namespace nbody

and provide the following interface:

namespace nbody {

class Simulation {

// ...

public:

void loadRun(std::istream &in);

void evolveSystemFor(float time);

void saveRun(std::ostream &out) const;

// ...

};

} // namespace nbody

Andre Kessler 6.S096 Lecture 8 – Project Environments 13 / 41

Final Project (nbody)

Physics Engine

void nbody::Simulation::loadRun(std::istream &in);

Constructor to read in a common “state” file.

Andre Kessler 6.S096 Lecture 8 – Project Environments 14 / 41

Final Project (nbody)

Physics Engine

void nbody::Simulation::evolveSystemFor(float time);

Evolve the system forward in time by time (in
seconds).

Andre Kessler 6.S096 Lecture 8 – Project Environments 15 / 41

Final Project (nbody)

Physics Engine

void nbody::Simulation::saveRun(std::ostream &out)

const;

Function to write out a common “state” file.

Andre Kessler 6.S096 Lecture 8 – Project Environments 16 / 41

Final Project (nbody)

Your team should take the initiative! Look up various ways of do the
integration to improve accuracy, different size time steps, unit systems,
and so forth. I’ll be adding hints throughout the week.

Physics Engine

Why so little specification?

Andre Kessler 6.S096 Lecture 8 – Project Environments 17 / 41

Final Project (nbody)

Physics Engine

Why so little specification?
Your team should take the initiative! Look up various ways of do the
integration to improve accuracy, different size time steps, unit systems,
and so forth. I’ll be adding hints throughout the week.

Andre Kessler 6.S096 Lecture 8 – Project Environments 17 / 41

Final Project (nbody)

Binary Star System Example 1

Andre Kessler 6.S096 Lecture 8 – Project Environments 18 / 41

Final Project (nbody)

Binary Star System Example 2

Andre Kessler 6.S096 Lecture 8 – Project Environments 19 / 41

Final Project (nbody)

Binary Star System Example 3

Andre Kessler 6.S096 Lecture 8 – Project Environments 20 / 41

Final Project (nbody)

Binary Star System Example 4

Andre Kessler 6.S096 Lecture 8 – Project Environments 21 / 41

Final Project (nbody)

Binary Star System Example 5

Andre Kessler 6.S096 Lecture 8 – Project Environments 22 / 41

Final Project (nbody)

Binary Star System Example 6

Andre Kessler 6.S096 Lecture 8 – Project Environments 23 / 41

Final Project (nbody)

Binary Star System Example 7

Andre Kessler 6.S096 Lecture 8 – Project Environments 24 / 41

Final Project (nbody)

Binary Star System Example 8

Andre Kessler 6.S096 Lecture 8 – Project Environments 25 / 41

Final Project (nbody)

Binary Star System Example 9

Andre Kessler 6.S096 Lecture 8 – Project Environments 26 / 41

Final Project (nbody)

Binary Star System Example 10

Andre Kessler 6.S096 Lecture 8 – Project Environments 27 / 41

Final Project (nbody)

Visualization

OpenGL; sample code provided tomorrow and Wednesday.

Andre Kessler 6.S096 Lecture 8 – Project Environments

Courtesy of Aaron M. Geller. Used with permission.

28 / 41

Final Project (nbody)

Interactive

Your final product should be easy to use.

- Mouse integration (moving the view)

- Keyboard controls

- Command line arguments

Andre Kessler 6.S096 Lecture 8 – Project Environments 29 / 41

Final Project (nbody)

Content Provided

Vector3.h

So that you don’t have to write (all) of your own vector math, feel free to
use the header available.

It’s a templated 3-d vector class that can be widely useful and is
guaranteed fast (“plain old data type”)

Andre Kessler 6.S096 Lecture 8 – Project Environments 30 / 41

Final Project (nbody)

Content Provided - Vector3.h

template<typename T>

class Vector3 {

T _x, _y, _z;

public:

Vector3() : _x{}, _y{}, _z{} {}

Vector3(T x_, T y_, T z_) :

x{x}, _y{y_}, _z{z_} {}

inline T x() const { return _x; }

inline T y() const { return _y; }

inline T z() const { return _z; }

T norm() const;

T normsq() const;

};

Andre Kessler 6.S096 Lecture 8 – Project Environments 31 / 41

Final Project (nbody)

Content Provided - Vector3.h

All the overloads and helpful functions you could want:

template<typename T> inline

const Vector3<T> operator+(const Vector3<T> &a,

const Vector3<T> &b) {

return Vector3<T>{ a.x() + b.x(),

a.y() + b.y(),

a.z() + b.z() };

}

//..etc

template<typename T> inline

T dot(const Vector3<T> &a, const Vector3<T> &b) {

return a.x() * b.x() + a.y() * b.y() + a.z() * b.z();

}

Andre Kessler 6.S096 Lecture 8 – Project Environments 32 / 41

Final Project (nbody)

Code Reviews

- You should be doing reviews of all committed
code within your group.

- Each group member should send me one such
review by Wednesday.

- There will also be an inter-group review that I will
organize.

Andre Kessler 6.S096 Lecture 8 – Project Environments 33 / 41

Final Project (nbody)

What you send to me

Your name and the name of the person whose code you are reviewing.

The snippet of code you are reviewing: more than 30 lines, less than
100.

Your comments interspersed in their code.

A summary of main points relating to the review (what they did well,
major areas for improvement, common issues, general observations).

You should choose a bite-sized chunk that will take you 45 mins to 1 hour
to fully review.

Andre Kessler 6.S096 Lecture 8 – Project Environments 34 / 41

Final Project (nbody)

What you send to me

Your name and the name of the person whose code you are reviewing.

The snippet of code you are reviewing: more than 30 lines, less than
100.

Your comments interspersed in their code.

A summary of main points relating to the review (what they did well,
major areas for improvement, common issues, general observations).

You should choose a bite-sized chunk that will take you 45 mins to 1 hour
to fully review.

Andre Kessler 6.S096 Lecture 8 – Project Environments 34 / 41

Final Project (nbody)

Tips for effective code review

Most important features for the code: correctness, maintainability,
reliability, and performance. Consistent style is good, but those other
points come first!

Keep your review short and to the point.

Check the code for compliance with the class coding standards.

Take the time for a proper review, but don’t spend much more than
an hour; additionally, don’t review much more than about 200 lines of
code at once.

Andre Kessler 6.S096 Lecture 8 – Project Environments 35 / 41

Final Project (nbody)

Structure of Final Project Source

Live demonstration of project setup

Andre Kessler 6.S096 Lecture 8 – Project Environments 36 / 41

Final Project (nbody)

Separation of build and source

Have a clean build.

Since this is definitely under revision control, we want to keep our
directories free from clutter

Hence, all object (.o) files will go in the bin/ directory.

Third-party libraries live in their own directory third party/gtest

or whatever.

Headers for our project named “project” are deployed to the install
directory.

Be able to build in one step

We have an upper-level Makefile so that we can still just make our
project.

However, that’s been split up into more modular sub-makefiles
(make/*.mk).

Andre Kessler 6.S096 Lecture 8 – Project Environments 37 / 41

Unit Testing

Unit Testing and Test-Driven Development

Testing your source code, one function or “unit” of
code at a time.

Test-driven development: write the tests first and then write code
which makes the tests pass

Decide how you want the interface to work in general, write some
tests, and go develop the specifics.

Andre Kessler 6.S096 Lecture 8 – Project Environments 38 / 41

Unit Testing

gtest: the Google C++ Testing Framework

Highly cross-platform, available from here.

Runs your full suite of tests (potentially each time you compile)

Tests are very portable and reusable across multiple architectures

Powerful, but very few dependencies.

Example from their primer:

ASSERT_EQ(x.size(), y.size()) << "unequal length";

for (int i = 0; i < x.size(); ++i) {

EXPECT_EQ(x[i], y[i]) << "differ at index " << i;

}

Andre Kessler 6.S096 Lecture 8 – Project Environments 39 / 41

https://code.google.com/p/googletest/wiki/Primer

Unit Testing

Examples

Let’s see some examples...

Andre Kessler 6.S096 Lecture 8 – Project Environments 40 / 41

Wrap-up

Wrap-up & Wednesday

Final project due Saturday

You need to begin work on it *now*!

Class on Wed.

OpenGL, templates, more on large projects

Questions?
Office hours Mon, Tues

Andre Kessler 6.S096 Lecture 8 – Project Environments 41 / 41

pgand4
Rectangle

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Effective Programming in C and C++
IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Assignment 3 - Recap
	Final Project (nbody)
	Unit Testing
	Wrap-up

