
6.S096 Lecture 1 – Introduction to C
Welcome to the Memory Jungle

Andre Kessler

Andre Kessler 6.S096 Lecture 1 – Introduction to C 1 / 30

1 Motivation

2 Class Logistics

3 Memory Model

4 Compiling

5 Wrap-up

Outline

Andre Kessler 6.S096 Lecture 1 – Introduction to C 2 /

1

2

3

4

5

30

First Example (Python)

def binary_search(data, N, value):
lo, hi = 0, N - 1

while lo < hi:
mid = (lo + hi) / 2

if data[mid] < value:
lo = mid + 1

else:
hi = mid

if hi == lo and data[lo] == value:
return lo

else:
return N

Andre Kessler 6.S096 Lecture 1 – Introduction to C 3 / 30

First Example (C)

size_t binary_search(int *data, size_t N, int value) {
size_t lo = 0, hi = N - 1;

while(lo < hi) {
size_t mid = lo + (hi - lo) / 2;

if(data[mid] < value) {
lo = mid + 1;

} else {
hi = mid;

}
}

return (hi == lo && data[lo] == value) ? lo : N;
}

Andre Kessler 6.S096 Lecture 1 – Introduction to C 4 / 30

Motivation

Why C or C++?

Speed

Andre Kessler 6.S096 Lecture 1 – Introduction to C

Graph of prog ram s peed acro ss language im plementations remove d due to copy right r estrictions.
Source: http://benchmarksgame.alioth.debian.org/u64q/which-programs-are-fastest.php.

5 / 30

http://benchmarksgame.alioth.debian.org/u64q/which-programs-are-fastest.php

Motivation

Why C or C++?

Power
C: direct access to memory and memory management, expressive but
terse

C++: all the power of C, plus stronger typing, object-oriented and
generic programming, and more

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

6

Motivation

Why C or C++?

Ubiquity
C: operating systems, drivers, embedded, high-performance computing

C++: large software projects everywhere

Examples: Linux kernel, Python, PHP, Perl, C#, Google search
engine/Chrome/MapReduce/etc, Firefox, MySQL, Microsoft
Windows/Office, Adobe Photoshop/Acrobat/InDesign/etc, lots of
financial/trading software, Starcraft, WoW, EA games, Doom engine,
and much, much more

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

7

Motivation

Effective Programming

Writing good, standards-compliant code is not hard.

Doing so will make your life much easier.

There is a lot of bad code out there.

You are better than that!

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

8

Motivation

Effective Programming

Anyone can write good, readable,
standards-compliant code.

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

9

Class Logistics

Course Syllabus

Day Topic
1 Introduction to C: memory and the compiler
2 Subtleties of C: memory, floating point
3 Guest lectures: Assembly and Secure C
4 Transition from C to C++
5 Object-oriented programming in C++
6 Design patterns and anti-patterns
7 Generic programming: templates and more
8 Projects: putting it all together
9 Projects: continued
10 Grab-bag: coding interviews, large projects

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

10

Class Logistics

Grading

6 units U credit, graded Pass/Fail
Coding assignments

Three assignments worth 20%, final worth 40%.
Automatic instantaneous feedback

Code reviews
Two reviews of code by your peers
More details later

To

Pass

at least 50% of available coding assignment points
must submit both code reviews

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

11

Class Logistics

Textbooks

None required.
However, the following books are on reserve at the library and may be
useful as references. Highly recommended if you end up doing more
C/C++ coding after this course.

Recommended
The C Programming Language by B. Kernighan and D. Ritchie (“K&R”)
The C++ Programming Language, 4th ed. by Bjarne Stroustrop
Effective C++, More Effective C++, and Effective STL by Scott Meyers

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

12

1

2

3

4

Class Logistics

The Minimal C Program

nothing.c: takes no arguments, does nothing, returns 0 (“exit success”)
int main(void) {

return 0;
}

To compile: make nothing
Previous step produced an executable named nothing
To run: ./nothing
Surprise! Does nothing.

But you probably have higher aspirations for your programs...

Andre Kessler 6.S096 Lecture 1 – Introduction to C /

1

2

3

4

30

13

Class Logistics

Hello, world!

hello.c: takes no arguments, prints “Hello, world!”, returns 0
int main(void) {

return 0;
}

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

30

14

14

Class Logistics

Hello, world!

hello.c: takes no arguments, prints “Hello, world!”, returns 0
#include <stdio.h>

int main(void) {
return 0;

}

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

15

Class Logistics

Hello, world!

hello.c: takes no arguments, prints “Hello, world!”, returns 0
#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return 0;

}

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

16

2

3

4

1

Class Logistics

Hello, world!

hello.c: takes no arguments, prints “Hello, world!”, returns 0
#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return 0;

}

To compile: make hello
Previous step produced an executable named hello
To run: ./hello
Hello, world!

Andre Kessler 6.S096 Lecture 1 – Introduction to C /

1

2

3

4

30

17

Memory Model

Pointers

How do you get at this information about memory?

Through pointers; that is, the & and * operators

int a = 5; The address of a is &a.
int *a ptr = &a; Read declarations from right to left.
See it this way: “*a ptr is declared to be of type int.”

You can apply & to any addressable value (“lvalue”)

return &5;
// error: lvalue required as unary ‘&’ operand

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

18

Memory Model

It’s all about the memory

int a = 5;
int *a ptr = &a;

Memory Address Value Identifier
&a 0x7fff6f641914 0x???????????? a
&a ptr 0x7fff6f641918 0x???????????? a ptr

Note: definitely a 64-bit machine, since the addresses are larger than
232 .

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

19

Memory Model

It’s all about the memory

int a = 5;
int *a ptr = &a;

Memory Address Value Identifier
&a 0x7fff6f641914 0x000000000005 a
&a ptr 0x7fff6f641918 0x???????????? a ptr

Note: definitely a 64-bit machine, since the addresses are larger than
232 .

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

20

Memory Model

It’s all about the memory

int a = 5;
int *a ptr = &a;

Memory Address Value Identifier
&a 0x7fff6f641914 0x000000000005 a
&a ptr 0x7fff6f641918 0x7fff6f641914 a ptr

Note: definitely a 64-bit machine, since the addresses are larger than
232 .

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 3021

Memory Model

C Data Types

For the bit counts, we’re assuming a 64-bit system.

char (8)
short (16), int (32),

long (64), long long (64+)
float (32), double (64), long double (80)

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

22

Memory Model

C Data Types

Table of C data types removed due to copyright restrictions.

Courtesy of http://en.cppreference.com/w/cpp/language/types

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

23

http://en.cppreference.com/w/cpp/language/types

Compiling

Development Environment

Andre Kessler 6.S096 Lecture 1 – Introduction to C /

We officially support development with gcc on Linux.

If you don’t have a computer running Linux, then that’s what today’s
lab time is devoted to.
Some options: SSH with PuTTY, Cygwin, Xcode on Mac

Create a directory dev/

Copy the file Makefile to this directory.

To compile a file filename.c, just run “make filename”.

30

24

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.cygwin.com/

Compiling

What happens when we compile?

#include <stdio.h>

int do_thing(float a, float b) {
/* do things */

}

void call(void) {
/* do stuff */
do_thing(a, b);
/* do more */

}

int main(void) {
call();
return 0;

}
Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

25

Compiling

What happens when we compile?

Three functions main, call, and do thing.
Object code is produced for each
When we run: the object code is loaded into memory
Each function that is called is in memory, somewhere.

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 30

26

Compiling

Examples

Time for some examples!

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 3027

Compiling

With great power comes great responsibility

C is focused on speed; always checki
would slow you down.
simple typo for(int i = 0; i <
corruption
Memory corruption can cause totally
behavior at worst
At best: Segmentation fault (core du
(at least it’s more obvious!)

ng array bounds/memory access

= N; ++i) can cause

unexpected, hard-to-debug

mped)

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 3028

Compiling

“C makes it easy to shoot yourself in the
foot; C++ makes it harder, but when you

do, it blows your whole leg off.”
— Bjarne Stroustrop, creator of the C++ programming language

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 3029

Wrap-up

Wrap-up & Friday

Open lab
Bring your laptops, get a C programming environment working
Test out the automatic grader

Cl

u

ass on Friday
Will cover floating point arithmetic, memory management, and
headers in more depth.

Q estions?

Andre Kessler 6.S096 Lecture 1 – Introduction to C / 3030

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Effective Programming in C and C++
IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Motivation
	Class Logistics
	Compiling
	Wrap-up

