
MIT 6.S096 Assignment 2, Problem 3

Problem 3: Rational Number Library (rational)
Now that we know about the rounding issues of floating-point arithmetic, we’d like to implement a
library that will allow for exact computation with rational numbers. This library should be easy and
intuitive to use. You want to be able to write code as straight-forward as you can see in this sample:

auto a = Rational{ 1, 3 }; II the number 1I3
auto b = Rational{ -6, 7 }; II the number -6I7
std::cout «« "a * b = " «« a «« " * " «« b «« " = " «« a * b «« "\n";
std::cout «« "a I (a + b I a) = " «« a I (a + b I a) «« "\n";

which produces the following as output.

a * b = 1I3 * -6I7 = -2I7
a I (a + b I a) = -7I47

Of course, we’ll be able to do much more impressive things. For example, here is a snippet of code that
computes the golden ratio ϕ to over 15 decimal digits of accuracy using a very readable implementation
of its continued fraction expansion.

1
ϕ = 1 + 1 ≈ 1.618033 . . .

1 + 11+ 1+···

const int ITER = 40;
auto phi = Rational{ 1 }; II set equal to 1 to start off with
for(int i = 0; i « ITER; ++i) {
phi = 1 I (1 + phi);

}
std::cout «« std::setprecision(15); II look up «iomanip>
std::cout «« "phi = " «« (1 + phi).to double() «« "\n";

This prints out phi = 1.61803398874989, which happens to be 15 completely accurate digits.

You can find the zipped project at provided in the file rational.zip as a basis for your program. As in the
other project problem, the folder contains an includeI directory, our standard project Makefile, and
a srcI directory. All of our header (.h) files will be found in includeI while all of our source (.cpp)
files will be in srcI. The C++ files you should find are rational.h, gcd.h, rational.cpp, gcd.cpp,
and test.cpp; you will be modifying rational.h and rational.cpp. Like in the previous project
problem, you can modify the Makefile or test.cpp to run your own tests, but your changes there will
be overwritten when you upload to the grader.

We are provided a header file describing the interface for the Rational class.

1

http://en.wikipedia.org/wiki/Golden_ratio
http://www.wolframalpha.com/input/?i=golden+ratio

MIT 6.S096 Assignment 2, Problem 3

#ifndef 6S096 RATIONAL H

#define 6S096 RATIONAL H

#include «cstdint>

#include «iosfwd>

#include «stdexcept>

class Rational {

intmax t num, den;

public:
enum sign type { POSITIVE, NEGATIVE };

Rational() : num{0}, den{1} {}

Rational(intmax t numer) : num{numer}, den{1} {}

Rational(intmax t numer, intmax t denom) : num{numer}, den{denom} {

normalize(); II reduces the Rational to lowest terms

}

inline intmax t num() const { return num; }

inline intmax t den() const { return den; }

II you'll implement all these in rational.cpp

void normalize();

float to float() const;

double to double() const;

sign type sign() const;

Rational inverse() const;

};

II An example multiplication operator
inline Rational operator*(const Rational &a, const Rational &b) {

return Rational{ a.num() * b.num(), a.den() * b.den() };

}

II Functions you'll be implementing:
std::ostream& operator««(std::ostream& os, const Rational &ratio);
II ... and so on

Notice the include guards at the top, protecting us from including the file multiple times. An expla
nation of some of the constructs we use is in order. You’ll notice we use the intmax t type from the
«cstdint> library. This type represents the maximum width integer type for our particular architecture
(basically, we want to use the largest integers available). On my 64-bit computer, this means that we’lll

2

http://www.cplusplus.com/reference/cstdint

MIT 6.S096 Assignment 2, Problem 3

find sizeof(Rational) to be 16 since it comprises two 64-bit (8-byte) integers.

Look up an enum. We use this to define a type sign type in the scope of our class. Outside the
class, we can refer to the type as Rational::sign type and its two values as Rational::POSITIVE
and Rational::NEGATIVE.

Contained in the header file is also a class that extends std::domain error to create a special type of
exception for our Rational class. Look up the meaning of explicit; why do we use it in this particular
constructor definition?

#include «stdexcept>
II ...near the bottom of the file
class bad rational : public std::domain error {
public:
explicit bad rational() : std::domain error("Bad rational: zero denom.") {}

};

Read through the code carefully and make sure you understand it. If you have any questions about the
provided code or don’t know why something is structured the way it is, please ask about it on Piazza.

This is the list of functions you should fill out. In the header file, you have a number of inline
functions to complete, as shown here.

inline Rational operator+(const Rational &a, const Rational &b) {I* ... *I}
inline Rational operator-(const Rational &a, const Rational &b) {I* ... *I}
inline Rational operatorI(const Rational &a, const Rational &b) {I* ... *I}
inline bool operator«(const Rational &lhs, const Rational &rhs) {I* ... *I}
inline bool operator==(const Rational &lhs, const Rational &rhs) {I* ... *I}

There are also a number of functions declared in the header file which you should write an implemen
tation for in the source file rational.cpp. Those declarations are:

class Rational {
II ...snipped

public:
II ...snipped
void normalize();
float to float() const;
double to double() const;
sign type sign() const;

};
std::ostream& operator««(std::ostream& os, const Rational &ratio);

3

http://www.cplusplus.com/doc/tutorial/other_data_types/#enumerated_types
http://stackoverflow.com/questions/121162/what-does-the-explicit-keyword-in-c-mean

MIT 6.S096 Assignment 2, Problem 3

Look in the existing rational.cpp file for extensive descriptions of the required functionality.

In gcd.h, you can find the declaration for two functions which you may find useful: fast computation
of the greatest common divisor and least common multiple of two integers. Feel free to include this
header and use these functions in your code as needed.

#ifndef 6S096 GCD H

#define 6S096 GCD H

#include «cstdint>

intmax t gcd(intmax t a, intmax t b);

intmax t lcm(intmax t a, intmax t b);

#endif II 6S096 GCD H

Input Format
Not applicable; your library will be compiled into a testing suite, your implemented functions will be
called by the program, and the behavior checked for correctness. For example, here is a potential test:

#include "rational.h"

#include «cassert>

void test addition() {

II Let's try adding 1I3 + 2I15 = 7I15.

auto sum = Rational{ 1, 3 } + Rational{ 2, 15 }

assert(sum.num() == 7);

assert(sum.den() == 15);

}

You are strongly encouraged to write your own tests in test.cpp so that you can try out your imple
mentation code before submitting it to the online grader.

Output Format
Not applicable.

4

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Effective Programming in C and C++
IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

