Problem 3: Matrix Multiplication 2 (matrix2)

Given an $R_{A} \times C_{A}$ matrix A and an $R_{B} \times C_{B}$ matrix B, with $1 \leq R_{A}, R_{B}, C_{A}, C_{B} \leq 1000$, write a program that computes the matrix product $C=A B$. All entries in matrices A and B are integers with absolute value less than 1000, so you don't need to worry about overflow. If matrices A and B do not have the right dimensions to be multiplied, the product matrix C should have its number of rows and columns both set to zero.

Use the code provided in the file matrix2.data.zip as a basis for your program-the input/output needed is already written for you. Matrices will be stored as a structure which we'll typedef as Matrix. This structure will contain the size of our matrix along with a statically-sized two-dimensional array to store the entries.

```
typedef struct Matrix_s {
    size_t R, C;
    int *index;
} Matrix;
```

In this problem, the memory for each matrix will be dynamically allocated on the heap, and must be freed at the end of the program. You will need to implement a function to allocate a matrix capable of storing $R \times C$ elements, as well as a function that will destroy the memory for such a matrix.

Do not submit your solution to problem 'matrix' for this problem or use statically allocated memory; such solutions will not receive any points for the assignment, even though they would pass the grader's tests.

Resource Limits

For this problem you are allotted 3 seconds of runtime and up to 32 MB of RAM.

Input Format

Line 1: Two space-separated integers, R_{A} and C_{A}.
Lines $2 \ldots R_{A}+1$: Line $i+1$ contains C_{A} space-separated integers: row i of matrix A.
Line $R_{A}+2$: Two space-separated integers, R_{B} and C_{B}.
Lines $R_{A}+3 \ldots R_{A}+R_{B}+4$: Line $i+R_{A}+3$ contains C_{B} space-separated integers: row i of matrix A.

Sample Input (file matrix2.in)

```
32
1
12
-4 0
2 3
121
3 1
```


Output Format

Line 1: Two space-separated integers R_{C} and C_{C}, the dimensions of the product matrix C.
Lines $2 \ldots R_{C}+1$: Line $i+1$ contains C_{C} space-separated integers: row i of matrix C.
If A and B do not have the right dimensions to be multiplied, your output should just be one line containing 00 .

Sample Output (file matrix2.out)

$$
\begin{array}{lll}
3 & 3 \\
4 & 4 & 2 \\
7 & 6 & 3 \\
-4 & -8 & -4
\end{array}
$$

Output Explanation

We are given

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & 2 \\
-4 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 1
\end{array}\right)
$$

so the product is the 3×3 matrix

$$
A B=\left(\begin{array}{cc}
1 & 1 \\
1 & 2 \\
-4 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
4 & 4 & 2 \\
7 & 6 & 3 \\
-4 & -8 & -4
\end{array}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Effective Programming in C and $\mathrm{C}++$

IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

