Problem 3: Matrix Multiplication 2 (matrix2)

Given an $R_A \times C_A$ matrix A and an $R_B \times C_B$ matrix B, with $1 \le R_A$, R_B , C_A , $C_B \le 1000$, write a program that computes the matrix product C = AB. All entries in matrices A and B are integers with absolute value less than 1000, so you don't need to worry about overflow. If matrices A and B do not have the right dimensions to be multiplied, the product matrix C should have its number of rows and columns both set to zero.

Use the code provided in the file matrix2.data.zip as a basis for your program—the input/output needed is already written for you. Matrices will be stored as a structure which we'll typedef as Matrix. This structure will contain the size of our matrix along with a statically-sized two-dimensional array to store the entries.

```
typedef struct Matrix_s {
   size_t R, C;
   int *index;
} Matrix;
```

In this problem, the memory for each matrix will be dynamically allocated on the heap, and must be freed at the end of the program. You will need to implement a function to allocate a matrix capable of storing $R \times C$ elements, as well as a function that will destroy the memory for such a matrix.

Do not submit your solution to problem 'matrix' for this problem or use statically allocated memory; such solutions will not receive any points for the assignment, even though they would pass the grader's tests.

Resource Limits

For this problem you are allotted 3 seconds of runtime and up to 32 MB of RAM.

Input Format

Line 1: Two space-separated integers, R_A and C_A . Lines 2..., R_A + 1: Line i + 1 contains C_A space-separated integers: row i of matrix A. Line R_A + 2: Two space-separated integers, R_B and C_B . Lines R_A + 3... R_A + R_B + 4: Line i + R_A + 3 contains C_B space-separated integers: row i of matrix A.

Sample Input (file matrix2.in)

Output Format

Line 1: Two space-separated integers R_C and C_C , the dimensions of the product matrix C.

Lines 2... R_C + 1: Line i + 1 contains C_C space-separated integers: row i of matrix C.

If A and B do not have the right dimensions to be multiplied, your output should just be one line containing 0 0.

Sample Output (file matrix2.out)

Output Explanation

We are given

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ -4 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$

so the product is the 3×3 matrix

$$AB = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ -4 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 2 \\ 7 & 6 & 3 \\ -4 & -8 & -4 \end{pmatrix}.$$

6.S096 Effective Programming in C and C++ IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.