
 

9. The Disorganized Handyman 
 
A bad handyman always blames his tools. – Famous Proverb. 
What if my hammer is made of paper? Can I blame it then? – Author Unknown. 

 
A handyman has a whole collection of nuts and bolts of different sizes in a bag. Each nut 
is unique and has a corresponding unique bolt, but the disorganized handyman has 
dumped them all into one bag and they are all mixed up.  How best to “sort” these nuts 
and attach each to its corresponding bolt? 
 

 
 
Given n nuts and n bolts, the handyman can pick an arbitrary nut and try it with each bolt 
and find the one that fits the nut.  Then, he can put away the nut-bolt pair, and he has a 
problem of size n – 1.  This means that he has done n “comparisons” to reduce the 
problem size by 1.  n – 1 comparisons will then shrink the problem size to n – 2, and so 
on.  The total number of comparisons required is n + (n – 1) + (n – 2) + … + 1 = 
n(n+1)/2. You could argue the last comparison is not required since there will only be one 
nut and one bolt left, but we will call it a confirmation comparison. 
  
Can one do better in terms of number of comparisons required?  More concretely, can 
one split the nuts and bolts up into two sets, each of half the size, so we have two 
problems of size n/2 to work on? This way, if the handyman has a helper, they can work 
in parallel. Of course, we could apply this strategy recursively to each of the problems of 
size n/2 if there are additional kind people willing to help. 
 
Unfortunately, simply splitting the nuts up into two (roughly) equal sized piles A and B 
and the bolts into similar sized piles C and D does not work.  If we group nuts and bolts 
corresponding to A and C together into a nut-bolt pile, it is quite possible that a nut in A 
may not fit any bolt in C; the correct bolt for that nut is in D.  Here’s an example.  

Programming constructs and algorithmic paradigms covered in this puzzle: In-
place pivoting. Recursive in-place sorting. 
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Think of the A, C piles as the ones to the left and the B, D piles as the ones to the right. 
The biggest bolt is in the left pile (second from left) and the biggest nut is in the right pile 
(second from right) L 
 
Can you think of a recursive Divide and Conquer strategy to solve the Nuts and Bolts 
problem so you require significantly fewer than n(n+1)/2 comparisons when n is large?
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In devising a Divide and Conquer strategy one has to determine how to divide the 
problem so the subproblems are essentially the same as the original problem, except 
smaller.  In the Nuts and Bolts problem, an arbitrary division of nuts that is unrelated to 
the division of bolts will not work.  We have to somehow guarantee that the subproblems 
can be solved independently of each other and this, of course, means that each bolt that 
attaches to each nut in the subproblem’s nut-bolt collection has to be in the collection. 
 

Pivoting in Divide and Conquer 
 
Pivoting is the key idea that results in a Divide and Conquer algorithm for our problem. 
What we can do is to pick a bolt – we will call it the pivot bolt – and use it to determine 
which nuts are smaller, which one fits exactly, and which nuts are bigger.  We separate 
the nuts into three piles in this way, with the middle pile being of size 1 and containing 
the paired nut.  Therefore, in this process we have discovered one nut-bolt pairing. Using 
the paired nut, that we will call the pivot nut, we can now split the bolts into two piles, the 
bolts that are bigger than the pivot nut, and those that are smaller.  The bigger bolts are 
grouped with the nuts that were bigger than the pivot bolt, and the smaller bolts are 
grouped with the nuts that were smaller than the pivot bolt. 
 
We now have a pile of “big” nuts and “big” bolts, all together, and a pile of small nuts 
and small bolts all together.  Depending on the choice of the pivot bolt, there will be a 
differing number of nuts in the two piles. However, we are guaranteed that the number of 
nuts is the same as the number of bolts in each pile if the original problem had a matched 
set of nuts and bolts, and moreover, the nut corresponding to any bolt in the pile is 
guaranteed to be in the same pile! 
 
In this strategy, we had to make n comparisons given the pivot bolt to split the nuts into 
two piles. In the process we discover the pivot nut.  We then make n – 1 comparisons to 
split the bolts up and add them to the nut piles.  That is a total of 2n – 1 comparisons. 
Assuming we chose a pivot nut that was middling in size, we have two problems roughly 
of size n/2. We can subdivide these two problems of size n/2 using roughly n total 
comparisons to four problems of size n/4. 
 
The cool thing is that the problem sizes halve at each step, rather than only shrinking by 
1. For example, suppose n = 100.  The original strategy requires 4950 comparisons. In the 
new strategy, using 199 comparisons, we get two subproblems each roughly of size 50.  
Even if we use the original strategy for each of these subproblems, we will only require 
1225 comparisons for each one, for a total of 199 + 1225 * 2 = 2649 comparisons.  Of 
course, we can perform recursive Divide and Conquer. In fact, if we can split each 
problem we encounter roughly in half1, the number of comparisons in the recursive 
strategy will grow as n	  log2	  n as compared to n2 in the original strategy. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This is not trivial since we have to pick the nut that looks like roughly half the nuts 
would be larger and half would be smaller in each pile that we want to split. 
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Interestingly, this puzzle has a deep relationship with perhaps the most widely used 
sorting algorithm Quicksort. Quicksort relies on the notion of pivoting that we just 
described. 
 

Relationship to Sorting 
 
In particular, suppose we have a Python list, which is implemented as an array, with 
unique elements2 as shown below: 
 

a	   b	   c	   d	   e	   f	   g	   h 
 
We wish to sort the list in ascending order. We choose an arbitrary pivot element, say, g, 
but it could just as easily been the last element h.  Now, we will partition the list into two 
sublists where the left sublist has elements less than g, and the right sublist has elements 
greater than g. The two sublists are not sorted, that is the order of elements less than g in 
the left sublist is random.  We can now represent the list as: 
 

Elements less than g	   g	   Elements greater than g 
 
The beautiful observation is that we can sort the left sublist without affecting the position 
of g, and similarly for the right sublist.  Once these two sublists have been sorted, we are 
done! 
 
Let’s look at a possible implementation of the recursive Divide and Conquer quicksort 
algorithm.  We first describe the code for the recursive structure and then the code for the 
pivoting step. 
 
1.	   def	  quicksort(lst,	  start,	  end):	  
2.	   	  	  	  	  if	  start	  <	  end:	  
3.	   	  	  	  	  	  	  	  	  split	  =	  pivotPartition(lst,	  start,	  end)	  
4.	   	  	  	  	  	  	  	  	  quicksort(lst,	  start,	  split	  -‐	  1)	  
5.	   	  	  	  	  	  	  	  	  quicksort(lst,	  split	  +	  1,	  end)	  
 
The function quicksort takes a Python list corresponding to the array to be sorted and 
the start and end indices of the list.  The list elements go from lst[start] to lst[end]. 
We could have assumed that the starting index is 0 and the ending index is the length of 
the list minus 1, but as you will see, asking for the indices as arguments has the 
advantage of not requiring a wrapper function like we had to have in the N-queens puzzle 
and the courtyard tiling puzzle. It is important to note that the procedure modifies the 
argument list lst to be sorted and does not return anything. 
 
If start equals end, then there is only one element in the list, which does not need 
sorting 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

– that is our base case and we do not need to modify the list. If there are two or 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2 The sorting algorithm and the code that we will present will work for non-unique 
elements, but it is easier to describe the algorithm assuming unique elements. 
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more elements, we have to split the list. The function pivotPartition selects a pivot 
element in the list (g in our example above) and modifies the list so the elements less than 
the pivot element are before the pivot and the ones greater than the pivot are after the 
pivot element. The index of the pivot element is returned. If we have the index, then we 
can effectively split the list simply by telling the recursive calls what the start and end 
indices are. This is primarily why we have them as arguments to quicksort. Since the 
element at the end index is part of the list and we do not have to touch lst[split], the 
two recursive calls correspond to lst[start] to lst[split	  –	  1] (Line 4) and 
lst[split	  +	  1] to lst[end] (Line 5). 
 
All that remains is to implement pivotPartition, which chooses a pivot between the 
start and end indices and modifies the argument list between the start and end indices 
appropriately. Here’s a first implementation of pivotPartition. 
 
  1.	   def	  pivotPartition(lst,	  start,	  end):	  
	  2.	   	  	  	  	  pivot	  =	  lst[end]	  
	  3.	   	  	  	  	  less,	  pivotList,	  more	  =	  [],	  [],	  []	  
	  4.	   	  	  	  	  for	  e	  in	  lst:	  
	  5.	   	  	  	  	  	  	  	  	  if	  e	  <	  pivot:	  
	  6.	   	  	  	  	  	  	  	  	  	  	  	  	  less.append(e)	  
	  7.	   	  	  	  	  	  	  	  	  elif	  e	  >	  pivot:	  
	  8.	   	  	  	  	  	  	  	  	  	  	  	  	  more.append(e)	  
	  9.	   	  	  	  	  	  	  	  	  else:	  
10.	   	  	  	  	  	  	  	  	  	  	  	  pivotList.append(e)	  
11.	   	  	  	  	  i	  =	  0	  
12.	   	  	  	  	  for	  e	  in	  less:	  
13.	   	  	  	  	  	  	  	  	  lst[i]	  =	  e	  
14.	   	  	  	  	  	  	  	  	  i	  +=	  1	  
15.	   	  	  	  	  for	  e	  in	  pivotList:	  
16.	   	  	  	  	  	  	  	  lst[i]	  =	  e	  
17.	   	  	  	  	  	  	  	  i	  +=	  1	  
18.	   	  	  	  	  for	  e	  in	  more:	  
19.	   	  	  	  	  	  	  	  	  lst[i]	  =	  e	  
20.	   	  	  	  	  	  	  	  	  i	  +=	  1	  
21.	   	  	  	  	  return	  lst.index(pivot)	  
 
The first line of the body of the function chooses the pivot element as the last element of 
the list (Line 2). In our Nuts and Bolts problem, we wish to find a middling size pivot, 
and here too we would like to choose an element such that about half the other elements 
are smaller and the other half are bigger. We do not want to search for the best pivot 
because that may require significant computation. If we assume that the input list is 
initially randomized, then there is equal probability that any element is a “middle” 
element. Therefore, we pick the last element as the pivot. Note that the order of the 
smaller elements and bigger elements in the split lists will still be random since we are 
not sorting them in pivotPartition. We can therefore keep picking the last element as 
the pivot recursively and we will get split lists that are roughly equal in size.  This will 
mean that on average quicksort will only require n	  log2	  n comparisons to sort the 
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original list with n elements.  In a pathological case it may require n2 operations – we will 
explore Quicksort’s behavior in the exercises. 
 
We have three lists corresponding to the elements that are smaller than the pivot (less), 
the elements that are equal to the pivot (pivotList) and the elements that are bigger than 
the pivot (more). pivotList is a list because there may be repeated values in the list and 
one of these may be chosen as a pivot. These three lists are initialized to be empty on 
Line 3.  In Lines 4-10, scanning the input list lst populates the three lists. In Lines 11-20 
lst is modified to have elements in less followed by elements in pivotList followed 
by elements in more. 
 
Finally, the index of the pivot element is returned. Note that if there are repeated 
elements in the list and, in particular, if the pivot element is repeated, the index of the 
first occurrence of the pivot is returned. This means that the second recursive call in 
quicksort (Line 5) will operate on a (sub)list whose first elements are equal to the pivot. 
These elements will remain at the front of the (sub)list since the other elements are all 
greater than the pivot. 
 

In-Place Partitioning 
 
The above implementation does not exploit the main advantage of Quicksort in that the 
partitioning step, i.e., going from the original list/array to the one with g’s location fixed 
and the two sublists unsorted but satisfying ordering relationships with g, can be done 
without requiring additional list/array storage. 
 
The Merge Sort algorithm covered in the N Queens puzzle only requires n	  log2	  n 
comparisons in the worst case. Merge Sort guarantees during splitting that two sublists 
differ in size by at most one element. The merge step of Merge Sort is where all the work 
happens. In Quicksort, the pivot-based partitioning or splitting is the workhorse step. The 
merge step is trivial. Merge Sort requires additional storage of a temporary list during its 
merge step, whereas Quicksort as we will show below does not. 
 
While the Selection Sort algorithm we coded in the Best Time To Party puzzle also does 
not have to make a copy of the list to be sorted, it is quite slow since it has two nested 
loops each of which is run (approximately) n times, where n is the size of the list to be 
sorted.  This means that it requires a number of comparisons that grows as n2, similar to 
the naïve Nuts and Bolts pairing algorithm we discussed that requires n(n+1)/2 
comparisons.  
 
Quicksort is one of the most widely deployed sorting algorithm because, on average, it 
only requires n	  log2	  n comparisons, and does not require additional list storage if 
pivotPartition is implemented cleverly as shown below. Other recursive sorting 
algorithms that only require n	  log	  n comparisons typically need to allocate additional 
memory that grows with the size of the list to be sorted.  
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	  1.	   def	  pivotPartitionClever(lst,	  start,	  end):	  
	  2.	   	  	  	  	  pivot	  =	  lst[end]	  	  
	  3.	   	  	  	  	  bottom	  =	  start	  -‐	  1	  	  	  	  	  	  	  	  
	  4.	   	  	  	  	  top	  =	  end	  
	  5.	   	  	  	  	  done	  =	  False	  
	  6.	   	  	  	  	  while	  not	  done:	  	  
	  7.	   	  	  	  	  	  	  	  	  while	  not	  done:	  	  
	  8.	   	  	  	  	  	  	  	  	  	  	  	  bottom	  +=	  1	  	  
	  9.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  bottom	  ==	  top:	  	  
10.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  done	  =	  True	  	  
11.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break	  
12.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  lst[bottom]	  >	  pivot:	  	  
13.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  lst[top]	  =	  lst[bottom]	  	  
14.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break	  	  
15.	   	  	  	  	  	  	  	  	  while	  not	  done:	  	  
16.	   	  	  	  	  	  	  	  	  	  	  	  	  top	  -‐=	  1	  
17.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  top	  ==	  bottom:	  	  
18.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  done	  =	  True	  	  
19.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break	  
20.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  lst[top]	  <	  pivot:	  	  
21.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  lst[bottom]	  =	  lst[top]	  	  
22.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break	  	  
23.	   	  	  	  	  lst[top]	  =	  pivot	  	  
24.	   	  	  	  	  return	  top	  
 
This code is quite different from the first version. The first thing to observe about this 
code is that it works exclusively on the input list lst and does not allocate additional 
list/array storage to store list elements other than the variable pivot that stores one list 
element.  (The list variables less, pivotList and more have disappeared.) Furthermore, 
only list elements between the start and end indices are modified. This procedure uses in-
place pivoting – the list elements exchange positions and are not copied from one list to 
another wholesale as in the first version of the procedure. 
 
It is easiest to understand the procedure with an example.  Suppose we want to sort the 
following list: 
 

a	  =	  [4,	  65,	  2,	  -‐31,	  0,	  99,	  83,	  782,	  1]	  
quicksort(a,	  0,	  len(a)	  -‐	  1)	  

 
How exactly is the first pivoting done in-place? The pivot is the last element 1. When 
pivotPartitionClever is called for the first time, it is called with start	  =	  0 and end	  
=	  8. This means that bottom	  =	  -‐1 and top	  =	  8. We enter the outer while loop and then 
the first inner while loop (Line 7). The variable bottom is incremented to 0. We search 
rightward from the left of the list for an element that is greater than the pivot element 1. 
The very first element a[0]	  = 4	  >	  1.  We copy over this element to a[top], which 
contains the pivot. At this point, we have element 4 duplicated in the list, but no worries, 
we know what the pivot is, since we stored it in the variable pivot. If we printed the list 
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and the variables bottom and top after the first inner while loop completes, this is what 
we would see: 
 

[4,	  65,	  2,	  -‐31,	  0,	  99,	  83,	  782,	  4]	  bottom	  =	  0	  top	  =	  8	  
	  
Now, we enter the second inner while loop (Line 15). We search moving leftward from 
the right of the list at a[7] (the variable top is decremented before the search) for an 
element that is less than the pivot 1. We keep decrementing top till we see the element 0, 
at which point top	  =	  4, since a[4]	  =	  0. We copy over element 0 to a[bottom	  =	  0]. 
Remember that a[bottom] was copied over to a[8] prior to this so we are not losing any 
elements in the list. This produces: 
	  

[0,	  65,	  2,	  -‐31,	  0,	  99,	  83,	  782,	  4]	  bottom	  =	  0	  top	  =	  4	  
	  
At this point we have taken one element 4 that is greater than the pivot 1 and put it all the 
way to the right of the list, and we have taken one element 0 which is less than the pivot 1 
and put it all the way to the left of the list. 
 
We now go into the second iteration of the outer while loop.  The first inner while loop 
produces: 
	  

[0,	  65,	  2,	  -‐31,	  65,	  99,	  83,	  782,	  4]	  bottom	  =	  1	  top	  =	  4	  
	  

From the left we found 65	  >	  1 and we copied it over to a[top	  =	  4]. Next, the second 
inner while loop produces: 
 

[0,	  -‐31,	  2,	  -‐31,	  65,	  99,	  83,	  782,	  4]	  bottom	  =	  1	  top	  =	  3	  
	  

We moved leftward from top	  =	  4 and discovered -‐31	  <	  1 and copied it over to 
a[bottom	  =	  1]. 
 
In the second outer while loop iteration we moved one element 65 to the right part of the 
list where beyond 65 all elements are greater than the pivot 1. And we moved -‐31 to the 
left of the list where all elements to the left of -‐31 are less than the pivot 1. 
 
We begin the third iteration of the outer while loop. The first inner while loop produces: 
 

[0,	  -‐31,	  2,	  2,	  65,	  99,	  83,	  782,	  4]	  bottom	  =	  2	  top	  =	  3	  
	  

We discovered a[bottom	  =	  2]	  =	  2 > 1 and moved it to a[top	  =	  3]. The second inner 
while loop decrements top and sees that it is equal to bottom and sets done to True, and 
we break out of the second inner while loop.  Since done is True, we do not continue the 
outer while loop. 
 
We set a[top	  =	  2]	  =	  pivot	  =	  1 (Line 23) and return the index of the pivot 1, which is 
2. The list a now looks like: 
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[0,	  -‐31,	  1,	  2,	  65,	  99,	  83,	  782,	  4]	  
 

We have indeed pivoted around the element 1 J 
 
Of course, all we have done is split the original list a up into two lists that are of size 2 
and size 6. We need to recursively sort these sublists. For the first sublist of 2 elements, 
we will pick -‐31 as the pivot and produce -‐31,	  0. For the second sublist, we will pick 4 
as the pivot and the process continues. 
 
Finally, it is important to note that unlike the procedure pivotPartition, 
pivotPartitionClever assumes that the pivot is chosen to be the end of the list.  So the 
assignment pivot	  =	  lst[end] (Line 2) is crucial to correctness! 
 

Exercises 
 
Exercise 1: Modify pivotPartitionClever to count the number of element moves and 
to return the number of moves, in addition to returning the pivot.  There are exactly two 
places where list elements are moved from one location to another in 
pivotPartitionClever. Add up the moves required in all pivotPartitionClever 
calls and print the total number after sorting is completed. This means that the procedure 
quicksort should count the moves made in its pivotPartitionClever call and in the 
two recursive calls that it makes, and should return this count. 
 
The total number of moves when quicksort is run on our example list a	  =	  [4,	  65,	  2,	  
-‐31,	  0,	  99,	  83,	  782,	  1] is 9. To further verify your implementation, run quicksort 
on a list generated by L	  =	  list(range(100)), which produces an ascending list of 
numbers from 0 to 99, and check that no moves are made.  
 
Exercise 2:  The number of moves is not the best indicator of computational complexity 
since moves are only made when the comparisons on Lines 12 and 20 in 
pivotPartitionClever return True. Count the number of iterations in both inner while 
loops of pivotPartitionClever using the same methodology as in Exercise 1. Verify 
that the total number of iterations for both loops
=	  [4,	  65,	  2,	  -‐31,	  0,	  99,	  83,	  782,	  1]. 

 across all recursive calls is 24 for list a	  

 
Generate a “randomly ordered” list of 100 numbers deterministically as follows:
 

R	  =	  [0]	  *	  100	  
R[0]	  =	  29	  
for	  i	  in	  range(100):	  
	  	  	  	  R[i]	  =	  (9679	  *	  R[i-‐1]	  +	  12637	  *	  i)	  %	  2287	  

 

 
Determine the number of iterations required for each of the lists, L, D, and R. Give an 
approximate formula for how many iterations quicksort will need in the case of list D 
from Exercise 1, if D has n elements.  Explain the difference between the number of 
iterations required for D versus R. 
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Hint: Think of what the sizes of the split lists are in the two cases. 
 
Puzzle Exercise 3: A related problem to sorting is the problem of finding the kth smallest 
element in an unsorted array. We will assume all elements are distinct to avoid the 
question of what we mean by the kth smallest when we have repeated elements. One way 
to solve this problem is to sort and then output the kth element, but we would like 
something faster. 
 
Notice that in Quicksort, after the partitioning step, we can tell which sublist has the item 
we are looking for, just by looking at their sizes. So, we only need to recursively examine 
one sublist, not two. For instance, if we are looking for the 17th-smallest element in our 
list, and after partitioning the sublist of elements less than the pivot, call it LESS, has size 
100, we then just need to find the 17th smallest element in LESS. If the LESS sublist has 
size exactly 16 then we just return the pivot. On the other hand, if the LESS sublist has 
size 10, then we need to look for the 17th smallest element of the original list in GREATER, 
which is the sublist containing elements greater than the pivot. 
 
Modify quicksort to code quickselect as described above. 
 
Hint: You will not need to modify k in either recursive call, nor do you need to modify 
pivotPartitionClever. 
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