
Chapter 9

Noise and Frequency Control

So far we only considered the deterministic steady state pulse formation in
ultrashort pulse laser systems due to the most important pulse shaping mech-
anisms prevailing in todays femtosecond lasers. Due to the recent interest
in using modelocked lasers for frequency metrology and high-resolution laser
spectroscopy as well as phase sensitive nonlinear optics the noise and tuning
properties of mode combs emitted by modelocked lasers is of much current
interest. Soliton-perturbation theory is well suited to successfully predict
the noise behavior of many solid-state and fiber laser systems [1] as well as
changes in group- and phase velocity in modelocked lasers due to intracavity
nonlinear effects [5]. We start off by reconsidering the derivation of the mas-
ter equation for describing the pulse shaping effects in a mode-locked laser.
We assume that in steady-state the laser generates at some position z (for
example at the point of the output coupler) inside the laser a sequence of
pulses with the envelope a(T = mTr, t). These envelopes are the solutions
of the corresponding master equation, where the dynamics per roundtrip is
described on a slow time scale T = mTR. Then the pulse train emitted from
the laser including the carrier is

A(T, t) =
+∞X

m=−∞
a(T = mTr, t)e

j
h
ωc
³
(t−mTR+

³
1
vg
− 1
vp

´
2mL

´i
. (9.1)

with repetition rate fR = 1/TR and center frequency ωc. Both are in general
subject to slow drifts due to mirror vibrations, changes in intracavity pulse
energy that might be further converted into phase and group velocity changes.
Note, the center frequency and repetition rate are only defined for times long
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compared to the roundtrip time in the laser. Usually, they only change on
a time scale three orders of magnitude longer than the expectation value of
the repetition rate.

9.1 The Mode Comb

Lets suppose the pulse envelope, repetition rate, and center frequency do not
change any more. Then the corresponding time domain signal is sketched in
Figure 9.1.

Figure 9.1: Pulse train emitted from a noise free mode-locked laser. The
pulses can have chirp. The intensity envelope repeats itself with repetition
rate fR. The electric field is only periodic with the rate fCE if it is related to
the repetion rate by a rational number.

The pulse a(T = mTr, t) is the steady state solution of the master equa-
tion describing the laser system, as studied in chapter 6. Let’s assume that
the steady state solution is a purturbed soliton according to equation (6.64).

a(t, T ) =

µ
A0 sech(

t− t0
τ

) + ac(T, t)

¶
e
−jφ0 T

TR (9.2)

with the soliton phase shift

φ0 =
1

2
δA20 =

|D|
τ 2

(9.3)
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Thus, there is a carrier envelope phase shift ∆φCE from pulse to pulse given
by

∆φCE =

µ
1

vg
− 1

vp

¶¯̄̄̄
ωc

2L− φ0 +mod(2π) (9.4)

= ωcTR

µ
1− vg

vp

¶
− φ0 +mod(2π)

The Fourier transform of the unperturbed pulse train is

Â(ω) = â(ω − ωc)
+∞X

m=−∞
ej(∆φCE−(ω−ωc)TR)m

= â(ω − ωc)
+∞X

n=−∞
e
jmTR

³
∆φCE
TR

−ω
´

= â(ω − ωc)
+∞X

n=−∞
TRδ

µ
ω −

µ
∆φCE
TR

+ nωR

¶¶
(9.5)

which is shown in Figure 9.2. Each comb line is shifted by the carrier-envelope
offset frequency fCE =

∆φCE
2πTR

from the origin

Figure 9.2: Opitcal mode comb of a mode-locked laser output.

To obtain self-consistent equations for the repetition rate, center fre-
quency and the other pulse parameters we employ soliton-perturbation the-
ory. This is justified for the case, where the steady state pulse is close to a
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soliton, i.e. for the fast saturable absorber case, this is the chirp free solution,
occuring when the ratio of gain filtering to dispersion is equal to the ratio
of SAM action to self-phase modulation, see Eq. (6.61). Then the pulse
solution in the m−th roundtrip is a solution of the nonlinear Schrödinger
Equation stabilized by the irreversible dynamics and subject to additional
perturbations

TR
∂

∂T
A = jD

∂2

∂t2
A− jδ|A|2A

+(g − l)A+Df
∂2

∂t2
A+ γ|A|2A+ Lpert

(9.6)

Due to the irreversible processes and the perturbations the solution to (9.6)
is a soliton like pulse with perturbations in amplitude, phase, frequency and
timing plus some continuum

A(t, T ) = [(Ao +∆Ao ) sech[(t−∆t)/τ ] + ac(T, t)]

e−jφoT/TRej∆p(T )te−jθ0
(9.7)

with pulse energy w0 = 2A2oτ .
The perturbations cause fluctuations in amplitude, phase, center fre-

quency and timing of the soliton and generate background radiation, i.e.
continuum

∆A(T, t) = ∆w(T )fw(t) +∆θ(T )fθ(t) +∆p(T )fp(t)

+∆t(T )ft(t) + ac(T, t).
(9.8)

where, we rewrote the amplitude perturbation as an energy perturbation.
The dynamics of the pulse parameters due to the perturbed Nonlinear Schrödinger
Equation (9.6) can be projected out from the perturbation using the adjoint
basis and the orthogonality relation, see Chapter 3.5. Note, that the fi cor-
respond to the first component of the vector in Eqs.(3.22) - (3.25). The dy-
namics of the pulse parameters due to the perturbed Nonlinear Schrödinger
Equation (9.6) can be projected out from the perturbation using the adjoint
basis f̄∗i corresponding to the first component of the vector in Eqs.(3.44) -
(3.47) and the new orthogonality relation

Re

½Z +∞

−∞
f̄∗i (t)fj(t)dt

¾
= δi,j. (9.9)
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We obtain

∂

∂T
∆w = − 1

τw
∆w +

1

TR
Re

½Z +∞

−∞
f̄∗w(t)Lpert(T, t)dt

¾
(9.10)

∂

∂T
∆θ(T ) =

2φo
TR

∆w

wo
+
1

TR
Re

½Z +∞

−∞
f̄∗θ (t)Lpert(T, t)dt

¾
(9.11)

∂

∂T
∆p(T ) = − 1

τ p
∆p+

1

TR
Re

½Z +∞

−∞
f̄∗p (t)Lpert(T, t)dt

¾
(9.12)

∂

∂T
∆t =

−2|D|
TR

∆ω +
1

TR
Re

½Z +∞

−∞
f̄∗t (t)Lpert(T, t)dt

¾
(9.13)

Note, that the irreversible dynamics does couple back the generated con-
tinuum to the soliton parameters. Here, we assume that this coupling is
small and neglect it in the following, see [1]. Due to gain saturation and the
parabolic filter pulse energy and center frequency fluctuations are damped
with normalized decay constants

1

τw
= (2gd − 2γA2o) (9.14)

1

τ p
=
4

3

gs
Ω2gτ

2

1

TR
(9.15)

Here, gs is the saturated gain and gd is related to the differential gain by

gs =
go

1 + wo
PLTR

(9.16)

gd =
dgs
dwo

· wo (9.17)

Note, in this model we assumed that the gain instantaneously follows the
intracavity average power or pulse energy, which is not true in general. How-
ever, it is straight forward to include the relaxation of the gain by adding a
dynamical gain model to the perturbation equations. For simplicity we shall
neglect this here. Since the system is autonomous, there is no retiming and
rephasing in the free running system.
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9.2 Noise in Mode-locked Lasers

Within this framework the response of the laser to noise can be easily in-
cluded. The spontaneous emission noise due to the amplifying medium with
saturated gain gs and excess noise factor Θ leads to additive white noise in
the perturbed master equation (9.6) with Lpert = ξ(t, T ), where ξ is a white
Gaussian noise source with autocorrelation function

hξ(t0, T 0)ξ(t, T )i = T 2RPnδ(t− t0)δ(T − T 0) (9.18)

where the spontaneous emission noise energy Pn · TR with

Pn = Θ
2gs
TR
~ωc = Θ

~ωc

τ p
(9.19)

is added to the pulse within each roundtrip in the laser. τ p is the cavity decay
time or photon lifetime in the cavity. Note, that the noise is approximated
by white noise, i.e. uncorrelated noise on both time scales t, T . The noise
between different round-trips is certainly uncorrelated. However, white noise
on the fast time scale t, assumes a flat gain, which is an approximation.
By projecting out the equations of motion for the pulse parameters in the
presence of this noise according to (9.8)—(9.13), we obtain the additional
noise sources which are driving the energy, center frequency, timing and
phase fluctuations in the mode-locked laser

∂

∂T
∆w = − 1

τw
∆w + Sw(T ), (9.20)

∂

∂T
∆θ(T ) =

2φo
TR

∆w

wo
+ Sθ(T ), (9.21)

∂

∂T
∆p(T ) = − 1

τ p
∆p+ Sp(T ), (9.22)

∂

∂T
∆t =

−2|D|
TR

∆p+ St(T ), (9.23)
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with

Sw(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗w(t)ξ(T, t)dt

¾
, (9.24)

Sθ(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗θ (t)ξ(T, t)dt

¾
, (9.25)

Sp(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗p (t)ξ(T, t)dt

¾
, (9.26)

St(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗t (t)ξ(T, t)dt

¾
. (9.27)

The new reduced noise sources obey the correlation functions

hSw(T 0)Sw(T )i =
Pn

4w0
δ(T − T 0), (9.28)

hSθ(T 0)Sθ(T )i =
4

3

µ
1 +

π2

12

¶
Pn

wo
δ(T − T 0), (9.29)

hSp(T 0)Sp(T )i =
4

3

Pn

wo
δ(T − T 0), (9.30)

hSt(T 0)St(T )i =
π2

3

Pn

wo
δ(T − T 0), (9.31)

hSi(T 0)Sj(T )i = 0 for i 6= j. (9.32)

The power spectra of amplitude, phase, frequency and timing fluctuations
are defined via the Fourier transforms of the autocorrelation functions

|∆ŵ(Ω)|2 =
Z +∞

−∞
h∆ŵ(T + τ)∆ŵ(T )ie−jΩτdτ, etc. (9.33)

After a short calculation, the power spectra due to amplifier noise are¯̄̄̄
∆ŵ(Ω)

wo

¯̄̄̄2
=

4

1/τ 2w + Ω2
Pn

wo
, (9.34)

|∆θ̂(Ω)|2 =
1

Ω2

∙
4

3

µ
1 +

π2

12

¶
Pn

wo
+

16

(1/τ 2p + Ω2)

φ2o
T 2R

Pn

wo

¸
, (9.35)

|∆p̂(Ω)τ |2 =
1

1/τ 2p + Ω2
4

3

Pn

wo
, (9.36)¯̄̄̄

∆t̂(Ω)

τ

¯̄̄̄2
=

1
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∙
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3
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+

1

(1/τ 2ω + Ω2)

4

3

4|D|2
T 2Rτ

4

Pn

wo

¸
. (9.37)
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These equations indicate, that energy and center frequency fluctuations be-
come stationary with mean square fluctuations*µ

∆w

wo

¶2+
= 2

Pnτw
wo

(9.38)

h(∆ωτ)2i = 2

3

Pnτ
2
p

wo
(9.39)

whereas the phase and timing undergo a random walk with variances

σθ(T ) = h(∆θ(T )−∆θ(0))2i = 4

3

µ
1 +

π2

12

¶
Pn

wo
|T | (9.40)

+16
φ2o
T 2R

Pn

wo
τ 3p

µ
exp

∙
− |T |
τ p

¸
− 1 + |T |

τw

¶

σt(T ) =

*µ
∆t(T )−∆t(0)

τ

¶2+
=

π2

3

Pn

wo
|T | (9.41)

+
4

3

4|D|2
T 2Rτ

4

Pn

wo
τ 3ω

µ
exp

∙
− |T |
τ p

¸
− 1 + |T |

τ p

¶
The phase noise causes the fundamental finite width of every line of the
mode-locked comb in the optical domain. The timing jitter leads to a fi-
nite linewidth of the detected microwave signal, which is equivalent to the
lasers fundamental fluctuations in repetition rate. In the strict sense, phase
and timing in a free running mode-locked laser (or autonomous oscillator)
are not anymore stationary processes. Nevertheless, since we know these
are Gaussian distributed variables, we can compute the amplitude spectra of
phasors undergoing phase diffusion processes rather easily. The phase differ-
ence ϕ = ∆θ(T )−∆θ(0) is a Gaussian distributed variable with variance σ
and propability distribution

p(ϕ) =
1√
2πσ

e−
ϕ2

2σ , with σ =

ϕ2
®
. (9.42)

Therefore, the expectation value of a phasor with phase ϕ is
ejϕ
®
=

1√
2πσ

Z +∞

−∞
e−

ϕ2

2σ ejϕdϕ (9.43)

= e−
1
2
σ.
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9.2.1 The Optical Spectrum

a(t, T ) =

µ
A0 sech(

t− t0
τ

) + ac(T, t)

¶
e
−jφ0 T

TR (9.44)

In the presence of noise the laser output changes from eq.(9.1) to a random
process. Neglecting the background continuum we obtain:

A(t, T = mTR) =
+∞X

m=−∞
(A0 +∆A(mTR)) sech

µ
t−mTR −∆t(mTR)

τ

¶
(9.45)

ej∆φCE ·mej(ωc+∆p(mTR))te−j∆θ(mTR)

For simplicity, we will neglect in the following amplitude and carrier fre-
quency fluctuations in Eq.(9.45), because they are bounded and become only
important at large offsets from the comb. However, we keep them in the ex-
pressions for the phase and timing jitter Eqs.(9.34) and (9.36). We assume
a stationary process, so that the optical power spectrum can be computed
from

S(ω) = lim
T=2NTR→∞

1

T
hÂ∗T (ω)ÂT (ω)i (9.46)

with the spectra related to a finite time interval

ÂT (ω) =
R T
−T A(t)e

−jωtdt = â0(ω − ωc)
PN

m=−N e
jmTR

³
∆φCE
TR

−ω
´

e−j[(ω−ωc)∆t(mTR)+∆θ(mTR)]

(9.47)

where â0(ω) is the Fourier transform of the pulse shape. In this case

â0(ω) =

Z ∞

−∞
A0 sech

µ
t

τ

¶
e−jωtdt = A0πτ sech

³π
2
ωτ
´

(9.48)

With (9.46) the optical spectrum of the laser is given by

S(ω) = limN→∞ |â0(ω − ωc)|2 1
2NTR

PN
m0=−N

PM
m=−N e

jTR

³
φCE
TR

−ω
´
(m−m0)

he+j[2π(f−fc)(∆t(mTR)−∆t(m0TR))−(θ(mTR)−θ(m0TR))]i
(9.49)
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Note, that the difference between the phases and the timing only depends on
the difference k = m−m0. In the current model phase and timing fluctuations
are uncorrelated. Therefore, for N →∞ we obtain

S(ω) = |â0(ω − ωc)|2 1
TR

P∞
k0=−∞ e

jTR

³
∆φCE
TR

−ω
´
k

he+j[2π(ω−ω0)(∆t((m+k)TR)−∆t(mTR))]i e−j(θ((m+k)TR)−θ(mTR))
®
.
(9.50)

The expectation values are exactly of the type calculated in (9.43), which
leads to

S(ω) =
|â0(ω − ωc)|2

TR

∞X
k0=−∞

e
jTR

³
φCE
TR

−ω
´
k
e−

1
2
σθ(kTR) (9.51)

e−
1
2 [((ω−ωc)τ)

2σt(kTR)]

Most often we are interested in the noise very close to the lines at frequency
offsets much smaller than the inverse energy and frequency relaxation times
τw and τ p. This is determined by the long term behavior of the variances,
which grow linearly in |T |

σθ(T ) =
4

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Pn

wo
|T | = 2∆ωφ|T |, (9.52)

σt(T ) =
1

3

Ã
π2 +

τ 2p
T 2R

µ
D

τ 2

¶2!
Pn

wo
|T | = 4∆ωt|T |. (9.53)

with the rates

∆ωφ =
2

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Pn

wo
, (9.54)

∆ωt =
1

6

Ã
π2 +

τ 2p
T 2R

µ
D

τ 2

¶2!
Pn

wo
. (9.55)

From the Poisson formula

+∞X
k=−∞

h[k]e−jkx =
+∞X

n=−∞
G(x+ 2nπ) (9.56)
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where

G(x) =

Z +∞

−∞
h[k]e−jkxdk, (9.57)

and Eqs.(9.51) to (9.55) we finally arrive at the optical line spectrum of the
mode-locked laser

S(ω) =
|â0(ω − ωc)|2

T 2R

+∞X
n=−∞

2∆ωn

(ω − ωn)2 +∆ω2n
(9.58)

which are Lorentzian lines at the mode comb positions

ωn = ωc + nωR − ∆φCE
TR

, (9.59)

=
∆φCE
TR

+ n0Rω, (9.60)

with a half width at half maximum of

∆ωn = ∆ωφ + [τ(ωn − ωc)]
2∆ωt. (9.61)

Estimating the number of modes M included in the comb by

M =
TR
τ
, (9.62)

we see that the contribution of the timing fluctuations to the linewidth of
the comb lines in the center of the comb is negligible. Thus the linewidth of
the comb in the center is given by 9.54

∆ωφ =
2

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Θ2gs
N0TR

(9.63)

=
2

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Θ

N0τ p
(9.64)

whereN0 =
wo
~ωc is the number of photons in the cavity and τ p = TR/(2l) is the

photon lifetime in the cavity. Note that this result for the mode-locked laser
is closely related to the Schawlow-Towns linewidth of a continuous wave laser
which is∆fφ =

Θ
2πN0τp

. For a solid-state laser at around 1µm wavelength with
a typical intracavity pulse energy of 50 nJ corresponding to N0 = 2.5 · 1011
photons and 100 MHz repetition rate with a 10% output coupler and an
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excess noise figure of Θ = 2, we obtain ∆fφ˜
Θ

3πN0τp
= 8µHz without the am-

plitude to phase conversion term depending on the nonlinear phase shift φo.
These intrinsic linewidths are due to fluctuations happening on a time scale
faster than the round-trip time and, therefore, can not be compensated by
external servo control mechanisms. For sub-10 fs lasers, the spectra fill up
the full gain bandwidth and the KLM is rather strong, so that the ampli-
tude and center frequency relaxation times are on the order of 10-100 cavity
roundtrips. In very short pulse Ti:sapphire lasers nonlinear phase shifts are
on the order of 1 rad per roundtrip. Then most of the fluctuations are due to
amplitude fluctuations converted into phase jitter. This contributions can in-
crease the linewidth by a factor of 100-10000, which may bring the linewidth
to the mHz and Hz level.

9.2.2 The Microwave Spectrum

Not only the optical spectrum is of interest als the spectrum of the photo
detected output of the laser is of intrest. Simple photo detection can convert
the low jitter optical pulse stream into a comb of extremely low phase noise
microwave signals. The photo detector current is proportional to the output
power of the laser. From Eq.(9.45) we find

I(t) = η
e

hωc
|A(T, t)|2 = η

e

hωcτ
× (9.65)

+∞X
m=−∞

(w0 +∆w(mTR))
1

2
sech2

µ
t−mTR −∆t(mTR)

τ

¶
,

where η is the quantum efficiency. For simplicity we neglect again the ampli-
tude noise and consider only the consequences due to the timing jitter. Then
we obtain for the Fourier Transform of the photo current

ÎT (ω) = η
ew0
hω0τ

|a0|2 (ω)
+NX

m=−N
e−jω(mTR+∆t(mTR)), (9.66)

|a0|2 (ω) =

Z ∞

−∞

1

2
sech2 (x) e−jωτxdx (9.67)

=
πωτ

sinh(π
2
ωτ)

, (9.68)
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and its power spectrum according to Eq.(9.46)

SI(ω) =
(ηeN0)

2

TR

¯̄|a0|2 (ω)¯̄2 +∞X
k=−∞

e−jωkTR

e−jω(∆t(kTR)−∆t(0))

®
,

=
(ηeN0)

2

TR

¯̄|a0|2 (ω)¯̄2 +∞X
k=−∞

e−jωkTRe−
1
2 [(ωτ)

2σt(kTR)] (9.69)

Using the Poisson formula again results in

SI(ω) =
(ηeN0)

2

TR

¯̄|a0|2 (ω)¯̄2 +∞X
k=−∞

e−jωkTRe−jω(∆t(kTR)−∆t(0)),

=
(ηeN0)

2

T 2R

¯̄|a0|2 (ω)¯̄2 +∞X
n=−∞

2∆ωI,n

(ω − nωR)2 +∆ω2I,n
(9.70)

with the linewidth ∆ωI,n of the n-th harmonic

∆ωI,n =

µ
2πn

τ

TR

¶2
∆ωt

=

µ
2πn

M

¶2
∆ωt. (9.71)

The fundamental line (n = 1) of the microwave spectrum has a width which
is M2−times smaller than the optical linewidth. For a 10-fs laser with 100
MHz repetition rate, the number of modes M is about a million.

9.2.3 Example: Yb-fiber laser:

Figure 9.3 shows the schematic of a streched pulse modelocked laser operating
close to zero dispersion. Therefore, the contribution of the Gordon-Haus
jitter should be minimized. Infact, it has been shown and discussed that
these types of lasers reach minimum jitter levels [2][3][4].
The timing jitter of the streched pulse laser shown in Figure is computed

in table 9.1.
The theoretical results above are derived with soliton perturbation the-

ory. The stretched pulse modelocked laser in Figure 9.3 is actually far from
being a soliton laser, see [3][4]. The pulse is breathing considerably during
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Figure 9.3: Schematic of a streched pulse modelocked laser.

Gain Half-Width Half Maximum Ωg = 2π · 0.3µm/fs(1.µm)2
0.02µm= 38THz

Saturated gain gs = 1.2
Pulse width τFWHM = 50fs, τ = τFWHM/1.76 = 30fs
Pulse repetition time TR = 12ns

Decay time for
center freq. fluctuations

1
τp
= 4

3
gs

Ω2gτ
2TR

= 4
3
1
TR

Intracavity power P = 100mW
Intra cavity pulse energy

/ photon number
wo = 1.2nJ, N0 = 0.6 · 1010

Noise power spectral density Pn = Θ2gs
TR
~ωo

Amplifier excess noise factor Θ = 10

ASE noise Pn
wo
= Θ 2gs

TRN0
= 1

3
Hz

Dispersion 5000fs2

Frequency-to-timing conv. 4
π2
4|D|2
τ4

τ2p
T2R
=
¡
2
π
3
4
3·10000
1000

¢2
= (3.7)2

Timing jitter density
¯̄̄
∆t̂(Ω)
τ

¯̄̄2
= 1

Ω2
π2

3
Pn
wo

³
1 + 4

π2
4|D|2
τ4

1
(T 2R/τ

2
p+T

2
RΩ

2)

´
Timing jitter [fmin, fmax] for

fmin << 1/τ p,
fmin = 10kHz, D = 5000fs2

∆t = τ

r
1

12·fmin
Pn
wo

³
1 + 4

π2
4|D|2
τ4

τ2p
T 2R

´
= 0.2fs

Table 9.1: Parameters for the streched pulse modelocked laser of Figure 9.3.
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Figure 9.4: Timing jitter measurement of the output from the streched pulse
modelocked laser measured with a HP 5504 signal analyzer.

passage through the cavity up to a factor of 10. Therefore, the theory should
take that into account by assuming an average pulse width when the noise
is added in the cavity. For more details see [3][4]. In reality, these quantum
limited (ASE) and rather small optical and microwave linewidths are diffi-
cult to observe, because they are most often swamped by technical noise such
as fluctuations in pump power, which may case gain fluctuations, or mirror
vibrations, air-density fluctuations or thermal drifts, which directly cause
changes in the lasers repetition rate. Figure 9.4 shows the single-sideband
phase noise spectrum L(f) of the N=32nd harmonic of the fundamental repe-
tition rate, i.e 1.3 GHz, in the photo current spectrum 9.70. The phase of the
N=32nd harmonic of the photocurrent 9.65 is directly related to the timing
jitter by

∆ϕ(T ) = 2πNfR∆t(T ) (9.72)

The single-sideband phase noise is the power spectral density of these phase
fluctuations defined in the same way as the power spectral density of the
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photocurrent itself, i.e.
L(f) = 2πS∆ϕ(ω) (9.73)

The phase fluctuations in a certain frequency intervall can then be easily
evaluated by

∆ϕ2 = 2

Z f max

f min

L(f)df. (9.74)

And the timing jitter is then

∆t =
1

2πNfR

s
2

Z f max

f min

L(f)df. (9.75)

For the measurements shown in Figure 9.4 we obtain for the integrated tim-
ing jitter from 10kHz to 20 MHz of 50 fs. This is about 200 times larger than
the limits derived in table 9.1. This discrepancy comes from several effects,
most notable amplitude to phase conversion in the photodetector during pho-
todetection, an effect not yet well understood as well as other noise sources
we might not have modelled, such as noise from the pump laser. However,
these noise sources can be eliminated in principle by careful design and feed-
back loops. Therefore, it is important to understand the dependence of the
group and phase velocity on the intracavity power or pulse energy at least
within the current basic model. Additional linear and nonlinear effects due to
higher order linear dispersion or nonlinearities may cause additional changes
in group and phase velocity, which might also create unusual dependencies
of group and phase velocity on intracavity pulse energy. Here we discuss as
an example the impact of the instantaneous Kerr effect on group and phase
velocity of a soliton like pulse.

9.3 Group- and Phase Velocity of Solitons

The Kerr-effect leads to a change of phase velocity of the pulse, resulting in
the self-phase shift of the soliton, φo, per round-trip. A change in group ve-
locity does not appear explicitly in the solution of the NLSE. Self-steepening
which becomes important for ultrashort pulses leads to an additional term in
the NLSE and therefore to an additional term in the master equation (9.6)

Lpert = − δ

ωc

∂

∂t
(|a(T, t)|2a(T, t)). (9.76)
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The impact of this term is expected to be small of the order of 1/(ωoτ) and
therefore only important for few-cycle pulses. However, it turns out that this
term alters the phase and group velocity of the soliton like pulse as much
as the nonlinear phase shift itself. We take his term into account in form of
a perturbation. This perturbation term is odd and real and therefore only
leads to a timing shift, when substituted into Eq.(9.6).

TR
∂∆t(T )

∂T

¯̄̄̄
sst

= − δ

ωc
A
3

0

Re

½Z +∞

−∞
f̄∗t (t)

∂

∂t

µ
sech3

µ
t

τ

¶¶
dt

¾
(9.77)

=
δ

ωc
A
2

0

=
2φ0
ωc

. (9.78)

This timing shift or group delay per round-trip, together with the nonlin-
ear phase shift leads to a phase change between carrier and envelope per
roundtrip given by

∆φCE = −φ0 + ωo TR
∂

∂T
∆t(T )

¯̄̄̄
selfsteep

= −1
2
δA20 + δA20 =

1

2
δA20. (9.79)

The compound effect of this phase delay per round-trip in the carrier versus
envelope leads to a carrier-envelope frequency

fCE =
∆φCE
2π

fR =
φ0
2π

fR. (9.80)

The group delay also changes the optical cavity length of the laser and there-
fore alters the repetition rate according to

∆fR = −f2R∆t(T )
¯̄
selfsteep

= −2φ0
fR
ωo

fR = − 2

m0
fCE, (9.81)

where m0 is the mode number of the carrier wave. Eqs.(9.80) and (9.81)
together determine the shift of the m-th line of the optical comb fm = fCE+
mfR due to an intracavity pulse energy modulation and a change in cavity
length by

∆fm = ∆fCE +m∆fR = fCE

µ
1− 2m

m0

¶
∆w

w0
−mfR

∆L

L0
. (9.82)

Specifically, Eq. (9.82) predicts, that the mode with number m = m0/2,
i.e. the mode at half the center frequency, does not change its frequency
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as a function of intracavity pulse energy. Of course, one has to remember,
that this model is so far based on self-phase modulation and self-steepening
as the cause of a power dependent carrier-envelope offset frequency. There
may be other mechanisms that cause a power dependent carrier envelope
offset frequency. One such effect is the group delay caused by the laser gain
medium another one is the carrier-envelope change due to a change in carrier
frequency, which gives most likely a very strong additional dependence on
pump power. Nevertheless, the formula 9.82 can be used for the control of
the optical frequency comb of a femtosecond laser by controlling the cavity
length and the intracavity pulse energy, via the pump power.

9.4 Femtosecond Laser Frequency Combs

Nevertheless, the formula (9.82) can be used for the control of the optical
frequency comb of a femtosecond laser by controlling the cavity length and
the intracavity pulse energy, via the pump power. According to Fig. 9.2
every line of the optical comb determined by

fm = fCE +mfR. (9.83)

Note, if the femtosecond laser emits a spectrum covering more than one
octave, then one can frequency double part of the comb at low frequencies
and beat it with the corresponding high frequency part of the comb on a
photo detector, see Fig. 9.5 The result is a photodector beat signal that
consists of discrete lines at the beat frequencies

fk = kfR ± fCE (9.84)

This method for determining the carrier-envelope offset frequency is called
f-to-2f interferometry.The carrier-envelope offset frequency can be extracted
with filters and synchronized to a local oscillator or to a fraction of the
repetition rate of the laser, for example fR/4.
Figure 9.6 shows the setup of an octave spanning 200 MHz Ti:sapphire

laser where the carrier envelope offset frequency fCE is locked to a local
oscillator at 36 MHz using the f-to-2f self-referencing method [6]
The spectral output of this laser is shown in Figure 9.7 The spectral com-

ponents at 1140 are properly delayed in a chirped mirror delay line against
the spectral components at 570 nm. The 1140 nm range is frequency dou-
bled in a 1mm BBO crystal and the frequency doubled light together with
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Figure 9.5: f-to-2f interferometry to determine the carrier-envelope offset
frequency.

Figure 9.6: Carrier-envelope phase stabilized 200 MHz octave-spanning
Ti:sapphire laser. The femtosecond laser itself is located inside the grey
area. AOM, acousto-optical modulator; S, silver end mirror; OC, output
coupling mirror; PBS, polarizing beam splitter cube; PMT, photomultiplier
tube; PD, digital phase detector; LF, loop filter; VSA, vector signal analyzer.
The carrier-envelope frequency is phase locked to 36 MHz.

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. 
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Figure 9.7: Output spectrum of the Ti:sapphire laser on a linear (black curve)
and on a logarithmic scale (grey curve). The wavelengths 570 and 1140 nm
used for self-referencing are indicated by two dashed lines.

the fundamental at 570 nm is projected into the same polarization via a po-
larizing beam splitter. The signal is then filtered through a 10nm wide filter
and detected with a photomultiplier tube (PMT). A typical signal from the
PMT is shown in Figure 9.8.Phase locking is achieved by a phase-locked loop
(PLL) by feeding the error signal from the digital phase detector to an AOM
placed in the pump beam (see Fig. 9.6) which modulates the pump power
and thus changes the carrier-envelope frequency via Eq.(9.82). A bandpass
filter is used to select the carrier-envelope beat signal at 170 MHz. This
signal is amplified, divided by 16 in frequency, and compared with a refer-
ence frequency fLO supplied by a signal generator (Agilent 33250A) using
a digital phase detector. The carrier-envelope beat signal is divided by 16
to enhance the locking range of the PLL. The phase detector acts as a fre-
quency discriminator when the loop is open, the output is thus the difference
frequency between the carrier-envelope frequency and the designated locking
frequency. The output signal is amplified in the loop filter, which in our case
is a proportional and integral controller, and fed back to the AOM, closing
the loop. The output of the phase detector is proportional to the remaining
jitter between the carrier-envelope phase evolution and the local oscillator
reduced by the division ratio 16. The power spectral density (PSD) of the
carrier-envelope phase fluctuations are measured with a vector signal ana-
lyzer (VSA) at the output of the phase detector. After proper rescaling by
the division factor the phase error PSD is shown in Fig. 9.9. The measure-

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. Used with permission.
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Figure 9.8: Radio-frequency power spectrum measured with a 100 kHz reso-
lution bandwidth (RBW). The peak at the carrier-envelope frequency offset
frequency exhibits a signal-to-noise ratio of ~35 dB.

ment was taken in steps with an equal amount of points per decade. The
PSD of the carrier-envelope phase fluctuations can be integrated to obtain
the total phase error. In the range above 1 MHz (see Fig. 9.9), the accu-
racy of this measurement is limited by the noise floor of the vector signal
analyzer. We obtain an integrated carrier-envelope phase jitter of about 0.1
radian over the measured frequency range. The major contribution to the
phase noise comes from low frequency fluctuations <10 kHz. If in addition to
the carrier-envelope frequency also the repetition rate of the laser is locked to
a frequency standard, such as for example a Cesium clock, the femtosecond
laser frequency comb in the optical domain is completely determined with
microwave precision and can be used for optical frequency measurements [6].

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. 
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Figure 9.9: Carrier-envelope phase noise power spectral density (left) and
integrated phase jitter (right) resulting in only 45 as accumulated carrier-
envelope timing jitter.

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
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