
Chapter 4

Laser Dynamics (single-mode)

Before we start to look into the dynamics of a multi-mode laser, we should
recall the technically important regimes of operation of a ”single-mode” laser.
The term ”single-mode” is set in apostrophes, since it doesn’t have to be
really single-mode. There can be several modes running, for example due to
spatial holeburning, but in an incoherent fashion, so that only the average
power of the beam matters. For a more detailed account on single-mode
laser dynamics and Q-Switching the following references are recommended
[1][3][16][4][5].

4.1 Rate Equations

In section 2.5, we derived for the interaction of a two-level atom with a laser
field propagating to the right the equations of motion (2.171) and (2.172),
which are given here again:
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where T1 is the energy relaxation rate, vg the group velocity in the host
material where the two level atoms are embedded, Es = IsT1, the saturation
fluence [J/cm2] , of the medium.and Is the saturation intensity according to

127



128 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE)
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which relates the saturation intensity to the microscopic parameters of the
transition like longitudinal and transversal relaxation rates as well as the
dipole moment of the transition.

Figure 4.1: Rate equations for the two-level atom

In many cases it is more convenient to normalize (4.1) and (4.2) to the
populations in level e and g or 2 and 1, respectively, N2 and N1, and the
density of photons, nL, in the mode interacting with the atoms and traveling
at the corresponding group velocity, vg, see Fig. 4.1. The intensity I in a
mode propagating at group velocity vg with a mode volume V is related to
the number of photons NL stored in the mode with volume V by

I = hfL
NL

2∗V
vg =

1

2∗
hfLnLvg, (4.3)

where hfL is the photon energy. 2∗ = 2 for a linear laser resonator (then
only half of the photons are going in one direction), and 2∗ = 1 for a ring
laser. In this first treatment we consider the case of space-independent rate
equations, i.e. we assume that the laser is oscillating on a single mode and
pumping and mode energy densities are uniform within the laser material.
With the interaction cross section σ defined as

σ =
hfL
2∗IsT1

, (4.4)
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and multiplying Eq. (??) with the number of atoms in the mode, we obtain

d

dt
(N2 −N1) = −(N2 −N1)

T1
− σ (N2 −N1) vgnL +Rp (4.5)

Note, vgnL is the photon flux, thus σ is the stimulated emission cross section
between the atoms and the photons. Rp is the pumping rate into the upper
laser level. A similar rate equation can be derived for the photon density

d

dt
nL = −nL

τ p
+

lg
L

σvg
Vg
[N2 (nL + 1)−N1nL] . (4.6)

Here, τ p is the photon lifetime in the cavity or cavity decay time and the
one in Eq.(4.6) accounts for spontaneous emission which is equivalent to
stimulated emission by one photon occupying the mode. Vg is the volume of
the active gain medium. For a laser cavity with a semi-transparent mirror
with transmission T , producing a small power loss 2l = − ln(1−T ) ≈ T (for
small T ) per round-trip in the cavity, the cavity decay time is τ p = 2l/TR ,
if TR = 2∗L/c0 is the roundtrip-time in linear cavity with optical length 2L
or a ring cavity with optical length L. The optical length L is the sum of the
optical length in the gain medium ngroupg lg and the remaining free space cavity
length la. Internal losses can be treated in a similar way and contribute to
the cavity decay time. Note, the decay rate for the inversion in the absence
of a field, 1/T1, is not only due to spontaneous emission, but is also a result of
non radiative decay processes. See for example the four level system shown
in Fig. 4.2. In the limit, where the populations in the third and first level
are zero, because of fast relaxation rates, i.e. T32, T10 → 0, we obtain

d

dt
N2 = −N2

τL
− σvgN2nL +Rp (4.7)

d

dt
nL = −nL

τ p
+

lg
L

σvg
Vg

N2 (nL + 1) . (4.8)

where τL = T21 is the lifetime of the upper laser level. Experimentally, the
photon number and the inversion in a laser resonator are not



130 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE)

3

0

1

2

N

N

N

N

3

2

1

0

T

T

T

32

21

10

R p

Figure 4.2: Vier-Niveau-Laser

very convenient quantities, therefore, we normalize both equations to the
round-trip amplitude gain g = lg

L
σvg
2Vg

N2TR experienced by the light and the
circulating intracavity power P = I ·Aeff

d

dt
g = −g − g0

τL
− gP

Esat
(4.9)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (4.10)

with

Es = IsAeffτL =
hfL
2∗σ

(4.11)

Psat = Esat/τL (4.12)

Pvac = hfLvg/2
∗L = hfL/TR (4.13)

g0 =
2∗vgRp

2Aeffc0
στL, (4.14)

the small signal round-trip gain of the laser. Note, the factor of two in front
of gain and loss is due to the fact, the g and l are gain and loss with respect to
amplitude. Eq.(4.14) elucidates that the figure of merit that characterizes the
small signal gain achievable with a certain laser material is the στL-product.
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Laser Medium
Wave-
length
λ0(nm)

Cross
Section
σ (cm2)

Upper-St.
Lifetime
τL (µs)

Linewidth
∆fFWHM =
2
T2
(THz)

Typ
Refr.
index
n

Nd3+:YAG 1,064 4.1 · 10−19 1,200 0.210 H 1.82
Nd3+:LSB 1,062 1.3 · 10−19 87 1.2 H 1.47 (ne)
Nd3+:YLF 1,047 1.8 · 10−19 450 0.390 H 1.82 (ne)
Nd3+:YVO4 1,064 2.5 · 10−19 50 0.300 H 2.19 (ne)
Nd3+:glass 1,054 4 · 10−20 350 3 H/I 1.5
Er3+:glass 1,55 6 · 10−21 10,000 4 H/I 1.46
Ruby 694.3 2 · 10−20 1,000 0.06 H 1.76
Ti3+:Al2O3 660-1180 3 · 10−19 3 100 H 1.76
Cr3+:LiSAF 760-960 4.8 · 10−20 67 80 H 1.4
Cr3+:LiCAF 710-840 1.3 · 10−20 170 65 H 1.4
Cr3+:LiSGAF 740-930 3.3 · 10−20 88 80 H 1.4
He-Ne 632.8 1 · 10−13 0.7 0.0015 I ∼1
Ar+ 515 3 · 10−12 0.07 0.0035 I ∼1
CO2 10,600 3 · 10−18 2,900,000 0.000060 H ∼1
Rhodamin-6G 560-640 3 · 10−16 0.0033 5 H 1.33
semiconductors 450-30,000 ∼ 10−14 ∼ 0.002 25 H/I 3 - 4

Table 4.1: Wavelength range, cross-section for stimulated emission, upper-
state lifetime, linewidth, typ of lineshape (H=homogeneously broadened,
I=inhomogeneously broadened) and index for some often used solid-state
laser materials, and in comparison with semiconductor and dye lasers.
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The larger this product the larger is the small signal gain g0 achievable with
a certain laser material. Table 4.1
From Eq.(2.145) and (4.4) we find the following relationship between the

interaction cross section of a transition and its microscopic parameters like
linewidth, dipole moment and energy relaxation rate

σ =
hfL
IsatT1

=
2T2
~2ZF

|M ˆ
E|2

|ˆ̃E |
2 .

This equation tells us that broadband laser materials naturally do show
smaller gain cross sections, if the dipole moment is the same.

4.2 Built-up of Laser Oscillation and Contin-
uous Wave Operation

If Pvac ¿ P ¿ Psat = Esat/τL, than g = g0 and we obtain from Eq.(4.10),
neglecting Pvac

dP

P
= 2 (g0 − l)

dt

TR
(4.15)

or
P (t) = P (0)e

2(g0−l) t
TR . (4.16)

The laser power builts up from vaccum fluctuations until it reaches the sat-
uration power, when saturation of the gain sets in within the built-up time

TB =
TR

2 (g0 − l)
ln

Psat

Pvac
=

TR
2 (g0 − l)

ln
AeffTR
στL

. (4.17)

Some time after the built-up phase the laser reaches steady state, with the
saturated gain and steady state power resulting from Eqs.(4.9-4.10), neglect-
ing in the following the spontaneous emission, and for d

dt
= 0 :

gs =
g0

1 + Ps
Psat

= l (4.18)

Ps = Psat

³g0
l
− 1
´
, (4.19)
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Figure 4.3: Built-up of laser power from spontaneous emission noise.

4.3 Stability and Relaxation Oscillations

How does the laser reach steady state, once a perturbation has occured?

g = gs +∆g (4.20)

P = Ps +∆P (4.21)

Substitution into Eqs.(4.9-4.10) and linearization leads to

d∆P

dt
= +2

Ps

TR
∆g (4.22)

d∆g

dt
= − gs

Esat
∆P − 1

τ stim
∆g (4.23)

where 1
τstim

= 1
τL

¡
1 + Ps

Psat

¢
is the stimulated lifetime. The perturbations

decay or grow like µ
∆P
∆g

¶
=

µ
∆P0
∆g0

¶
est. (4.24)

which leads to the system of equations (using gs = l)

A

µ
∆P0
∆g0

¶
=

Ã
−s 2 Ps

TR

− TR
Esat2τp

− 1
τstim

− s

!µ
∆P0
∆g0

¶
= 0. (4.25)

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Image removed due to copyright restrictions.
 
Please see: 
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There is only a solution, if the determinante of the coefficient matrix vanishes,
i.e.

s

µ
1

τ stim
+ s

¶
+

Ps

Esatτ p
= 0, (4.26)

which determines the relaxation rates or eigen frequencies of the linearized
system

s1/2 = − 1

2τ stim
±
sµ

1

2τ stim

¶2
− Ps

Esatτ p
. (4.27)

Introducing the pump parameter r = 1 + Ps
Psat

, which tells us how often we
pump the laser over threshold, the eigen frequencies can be rewritten as

s1/2 = − 1

2τ stim

Ã
1± j

s
4 (r − 1)

r

τ stim
τ p
− 1
!
, (4.28)

= − r

2τL
± j

s
(r − 1)
τLτ p

−
µ

r

2τL

¶2
(4.29)

There are several conclusions to draw:

• (i): The stationary state (0, g0) for g0 < l and (Ps, gs) for g0 > l are
always stable, i.e. Re{si} < 0.

• (ii): For lasers pumped above threshold, r > 1, the relaxation rate
becomes complex, i.e. there are relaxation oscillations

s1/2 = − 1

2τ stim
± j

s
1

τ stimτ p
. (4.30)

with frequency ωR equal to the geometric mean of inverse stimulated
lifetime and photon life time

ωR =

s
1

τ stimτ p
. (4.31)

There is definitely a parameter range of pump powers for laser with
long upper state lifetimes, i.e. r

4τL
< 1

τp
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• If the laser can be pumped strong enough, i.e. r can be made large
enough so that the stimulated lifetime becomes as short as the cavity
decay time, relaxation oscillations vanish.

The physical reason for relaxation oscillations and later instabilities is,
that the gain reacts to slow on the light field, i.e. the stimulated lifetime is
long in comparison with the cavity decay time.

Example: diode-pumped Nd:YAG-Laser

λ0 = 1064 nm, σ = 4 · 10−20cm2, Aeff = π (100µm× 150µm) , r = 50
τL = 1.2 ms, l = 1%, TR = 10ns

From Eq.(4.4) we obtain:

Isat =
hfL
στL

= 3.9
kW

cm2
, Psat = IsatAeff = 1.8 W, Ps = 91.5W

τ stim =
τL
r
= 24µs, τ p = 1µs, ωR =

s
1

τ stimτ p
= 2 · 105s−1.

Figure 4.4 shows the typically observed fluctuations of the output of a solid-
state laser with long upperstate life time of several 100 µs in the time and
frequency domain.
One can also define a quality factor for the relaxation oscillations by the

ratio of imaginary to real part of the complex eigen frequencies 4.29

Q =

s
4τL
τ p

(r − 1)
r2

,

which can be as large a several thousand for solid-state lasers with long
upper-state lifetimes in the millisecond range.
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Figure 4.4: Typically observed relaxation oscillations in time and frequency
domain.

4.4 Q-Switching

The energy stored in the laser medium can be released suddenly by increasing
the Q-value of the cavity so that the laser reaches threshold. This can be
done actively, for example by quickly moving one of the resonator mirrors in
place or passively by placing a saturable absorber in the resonator [1, 16].
Hellwarth was first to suggest this method only one year after the invention of

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Image removed due to copyright restrictions.
 
Please see: 
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Figure 4.5: Gain and loss dynamics of an actively Q-switched laser.

the laser. As a rough orientation for a solid-state laser, the following relation
for the relevant time scales is generally valid

τL À TR À τ p. (4.32)

4.4.1 Active Q-Switching

Fig. 4.5 shows the principle dynamics of an actively Q-switched laser. The
laser is pumped by a pump pulse with a length on the order of the upper-
state lifetime, while the intracavity losses are kept high enough, so that
the laser can not reach threshold. Therefore, the laser medium acts as an
energy storage. The energy only relaxes by spontenous and nonradiative
transitions. Then suddenly the intracavity loss is reduced, for example by
a rotating cavity mirror. The laser is pumped way above threshold and the
light field builts up exponentially with the net gain until the pulse energy
comes close to the saturation energy of the gain medium. The gain saturates
and is extracted, so that the laser is shut off by the pulse itself.

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Image removed due to copyright restrictions.
 
Please see: 



138 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE)

A typical actively Q-switched pulse is asymmetric: The rise time is pro-
portional to the net gain after the Q-value of the cavity is actively switched
to a high value. The light intensity growths proportional to 2g0/TR. When
the gain is depleted, the fall time mostly depends on the cavity decay time
τ p. For short Q-switched pulses a short cavity length, high gain and a large
change in the cavity Q is necessary. If the Q-switch is not fast, the pulse
width may be limited by the speed of the switch. Typical electro-optical and
acousto-optical switches are 10 ns and 50 ns, respectively

Figure 4.6: Asymmetric actively Q-switched pulse.

For example, with a diode-pumped Nd:YAG microchip laser [6] using an
electro-optical switch based on LiTaO3 Q-switched pulses as short as 270 ps
at repetition rates of 5 kHz, peak powers of 25 kW at an average power of
34 mW, and pulse energy of 6.8 µJ have been generated (Figure 4.7).

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Image removed due to copyright restrictions.
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Figure 4.7: Q-switched microchip laser using an electro-optic switch. The
pulse is measured with a sampling scope [8]

Similar results were achieved with Nd:YLF [7] and the corresponding
setup is shown in Fig. 4.8.
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Figure 4.8: Set-up of an actively Q-switched laser.

Kafka, J. D., and T. Baer. "Mode-locked erbium-doped fiber laser with soliton pulse shaping." Optics Letters 
14 (1989): 1269-1271. 
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4.4.2 Single-Frequency Q-Switched Pulses

Q-switched lasers only deliver stable output if they oscillate single frequency.
Usually this is not automatically achieved. One method to achieve this is by
seeding with a single-frequency laser during Q-switched operation, so that
there is already a population in one of the longitudinal modes before the
pulse is building up. This mode will extract all the energy before the other
modes can do, see Figure 4.9

Figure 4.9: Output intenisity of a Q-switched laser without a) and with
seeding b).

Another possibility to achieve single-mode output is either using an etalon
in the cavity or making the cavity so short, that only one longitudinal mode
is within the gain bandwidth (Figure 4.10). This is usually only the case if
the cavity length is on the order of a view millimeters or below.The microchip
laser [6][11][10] can be combined with an electro-optic modulator to achieve

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Image removed due to copyright restrictions.
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very compact high peak power lasers with sub-nanosecond pulsewidth (Figure
4.7).

Figure 4.10: In a microchip laser the resonator can be so short, that there is
only one longitudinal mode within the gain bandwidth.

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 
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4.4.3 Theory of Active Q-Switching

We want to get some insight into the pulse built-up and decay of the actively
Q-switched pulse. We consider the ideal situation, where the loss of the laser
cavity can be instantaneously switched from a high value to a low value, i.e.
the quality factor is switched from a low value to a high value, respectively
(Figure: 4.11)

Figure 4.11: Acitve Q-Switching dynamics assuming an instantaneous
switching [16].

Pumping Interval:

During pumping with a constant pump rate Rp, proportional to the small
signal gain g0, the inversion is built up. Since there is no field present, the
gain follows the simple equation:

d

dt
g = −g − g0

τL
, (4.33)

or

g(t) = g0(1− e−t/τL), (4.34)

Figure by MIT OCW.
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Pulse Built-up-Phase:

Assuming an instantaneous switching of the cavity losses we look for an
approximate solution to the rate equations starting of with the initial gain
or inversion gi = hfLN2i/(2Esat) = hfLNi/(2Esat), we can savely leave the
index away since there is only an upper state population. We further assume
that during pulse built-up the stimulated emission rate is the dominate term
changing the inversion. Then the rate equations simplify toτ

d

dt
g = − gP

Esat p

(4.35)

d

dt
P =

2(g − l)

TR
P, (4.36)

resulting in

dP

dg
=
2Esat

TR

µ
l

g
− 1
¶
. (4.37)

We use the following inital conditions for the intracavity power P (t = 0) = 0
and initial gain g(t = 0) = gi = r · l. Note, r means how many times the laser
is pumped above threshold after the Q-switch is operated and the intracavity
losses have been reduced to l. Then 4.37 can be directly solved and we obtain

P (t) =
2Esat

TR

µ
gi − g(t) + l ln

g(t)

gi

¶
. (4.38)

From this equation we can deduce the maximum power of the pulse, since
the growth of the intracavity power will stop when the gain is reduced to the
losses, g(t)=l, (Figure 4.11)

Pmax =
2lEsat

TR
(r − 1− ln r) (4.39)

=
Esat

τ p
(r − 1− ln r) . (4.40)

This is the first important quantity of the generated pulse and is shown
normalized in Figure 4.12.
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Figure 4.12: Peak power of emitted pulse as function of pump parameter.

Next, we can find the final gain gf , that is reached once the pulse emission
is completed, i.e. that is when the right side of (4.38) vanishesµ

gi − gf + l ln

µ
gf
gi

¶¶
= 0 (4.41)

Using the pump parameter r = gi/l, this gives as an expression for the ratio
between final and initial gain or between final and initial inversion

1− gf
gi
+
1

r
ln

µ
gf
gi

¶
= 0, (4.42)

1− Nf

Ni
+
1

r
ln

µ
Nf

Ni

¶
= 0, (4.43)

which depends only on the pump parameter. Assuming further, that there
are no internal losses, then we can estimate the pulse energy generated by

EP = (Ni −Nf)hfL. (4.44)

This is also equal to the output coupled pulse energy since no internal losses
are assumed. Thus, if the final inversion gets small all the energy stored in
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Figure 4.13: Energy extraction efficiency as a function of pump power.

the gain medium can be extracted. We define the energy extraction efficiency
η

η =
Ni −Nf

Ni
, (4.45)

that tells us how much of the initially stored energy can be extracted using
eq.(4.43)

η +
1

r
ln (1− η) = 0. (4.46)

This efficiency is plotted in Figure 4.13.
Note, the energy extraction efficiency only depends on the pump param-

eter r. Now, the emitted pulse energy can be written as

EP = η(r)NihfL. (4.47)

and we can estimate the pulse width of the emitted pulse by the ratio between
pulse energy and peak power using (4.40) and (4.47)

τPulse =
EP

2lPpeak
= τ p

η(r)

(r − 1− ln r)
NihfL
2lEsat

= τ p
η(r)

(r − 1− ln r)
gi
l

τ p
η(r) · r

(r − 1− ln r) . (4.48)
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Figure 4.14: Normalized pulse width as a function of pump parameter.

The pulse width normalized to the cavity decay time τ p is shown in Figure
4.14.

4.4.4 Passive Q-Switching

In the case of passive Q-switching the intracavity loss modulation is per-
formed by a saturable absorber, which introduces large losses for low inten-
sities of light and small losses for high intensity.

Relaxation oscillations are due to a periodic exchange of energy stored in
the laser medium by the inversion and the light field. Without the saturable
absorber these oscillations are damped. If for some reason there is two much
gain in the system, the light field can build up quickly. Especially for a low
gain cross section the backaction of the growing laser field on the inversion is
weak and it can grow further. This growth is favored in the presence of loss
that saturates with the intensity of the light. The laser becomes unstabile,
the field intensity growth as long as the gain does not saturate below the net
loss, see Fig.4.15.
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Figure 4.15: Gain and loss dynamics of a passively Q-switched laser

Now, we want to show that the saturable absorber leads to a destabiliza-
tion of the relaxation oscillations resulting in the giant pulse laser.
We extend our laser model by a saturable absorber as shown in Fig. 4.16

T       =2lout

τ   , E  LL τ   , E  A A
A eff,L A eff,A

g q

P-

P+ P+ P  - P--

Figure 4.16: Simple laser model described by rate equations. We assume
small output coupling so that the laser power within one roundtrip can be
considered position independent. Neglecting standing wave effects in the
cavity, the field density is related to twice the circulating power P+ or P−.

Rate equations for a passively Q-switched laser

We make the following assumptions: First, the transverse relaxation times
of the equivalent two level models for the laser gain medium and for the
saturable absorber are much faster than any other dynamics in our system,
so that we can use rate equations to describe the laser dynamics. Second, we
assume that the changes in the laser intensity, gain and saturable absorption



148 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE)

are small on a time scale on the order of the round-trip time TR in the cavity,
(i.e. less than 20%). Then, we can use the rate equations of the laser as
derived above plus a corresponding equation for the saturable loss q similar
to the equation for the gain.

TR
dP

dt
= 2(g − l − q)P (4.49)

TR
dg

dt
= −g − g0

TL
− gTRP

EL
(4.50)

TR
dq

dt
= −q − q0

TA
− qTRP

EA
(4.51)

where P denotes the laser power, g the amplitude gain per roundtrip, l the
linear amplitude losses per roundtrip, g0 the small signal gain per roundtrip
and q0 the unsaturated but saturable losses per roundtrip. The quanti-
ties TL = τL/TR and TA = τA/TR are the normalized upper-state life-
time of the gain medium and the absorber recovery time, normalized to
the round-trip time of the cavity. The energies EL = hνAeff,L/2

∗σL and
EA = hνAeff,A/2

∗σA are the saturation energies of the gain and the ab-
sorber, respectively. .
For solid state lasers with gain relaxation times on the order of τL ≈ 100

µs or more, and cavity round-trip times TR ≈ 10 ns, we obtain TL ≈ 104.
Furthermore, we assume absorbers with recovery times much shorter than
the round-trip time of the cavity, i.e. τA ≈ 1 − 100 ps, so that typically
TA ≈ 10−4 to 10−2. This is achievable in semiconductors and can be en-
gineered at will by low temperature growth of the semiconductor material
[20, 30]. As long as the laser is running cw and single mode, the absorber will
follow the instantaneous laser power. Then, the saturable absorption can be
adiabatically eliminated, by using eq.(4.51)

q =
q0

1 + P/PA
with PA =

EA

τA
, (4.52)

and back substitution into eq.(4.49). Here, PA is the saturation power of
the absorber. At a certain amount of saturable absorption, the relaxation
oscillations become unstable and Q-switching occurs. To find the stability
criterion, we linearize the system

TR
dP

dt
= (g − l − q(P ))P (4.53)

TR
dg

dt
= −g − g0

TL
− gTRP

EL
. (4.54)
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Stationary solution

As in the case for the cw-running laser the stationary operation point of the
laser is determined by the point of zero net gain

gs = l + qs
g0

1 + Ps/PL
= l +

q0
1 + Ps/PA

. (4.55)

The graphical solution of this equation is shown in Fig. 4.17

g

l+q

l

P

g  =l+q  

o

o

sg

l+qs

s s

Figure 4.17: Graphical solution of the stationary operating point.

Stability of stationary operating point or the condition for Q-
switching

For the linearized system, the coefficient matrix corresponding to Eq.(4.25)
changes only by the saturable absorber [23]:

TR
d

dt

µ
∆P0
∆g0

¶
= A

µ
∆P0
∆g0

¶
, with A =

µ −2 dq
dP

¯̄
cw
Ps 2Ps

−gsTR
EL

− TR
τstim

¶
(4.56)

The coefficient matrix A does have eigenvalues with negative real part, if and
only if its trace is negative and the determinante is positive which results in
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two conditions

−2P dq

dP

¯̄̄̄
cw

<
r

TL
with r = 1 +

PA

PL
and PL =

EL

τL
, (4.57)

and

dq

dP

¯̄̄̄
cw

r

TL
+ 2gs

r − 1
TL

> 0. (4.58)

After cancelation of TL we end up with

¯̄̄̄
dq

dP

¯̄̄̄
cw

¯̄̄̄
<

¯̄̄̄
dgs
dP

¯̄̄̄
cw

¯̄̄̄
. (4.59)

For a laser which starts oscillating on its own, relation 4.59 is automatically
fulfilled since the small signal gain is larger than the total losses, see Fig.
4.17. Inequality (4.57) has a simple physical explanation. The right hand
side of (4.57) is the relaxation time of the gain towards equilibrium, at a
given pump power and constant laser power. The left hand side is the decay
time of a power fluctuation of the laser at fixed gain. If the gain can not
react fast enough to fluctuations of the laser power, relaxation oscillations
grow and result in passive Q-switching of the laser.

As can be seen from Eq.(4.55) and Eq.(4.57), we obtain

−2TLP dq

dP

¯̄̄̄
cw

= 2TLq0

P
χPL³

1 + P
χPL

´2
¯̄̄̄
¯̄̄
cw

< rs with χ =
PA

PL
, (4.60)

where χ is an effective ”stiffness” of the absorber against cw saturation. The
stability relation (4.60) is visualized in Fig. 4.18.
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Figure 4.18: Graphical representation of cw-Q-switching stability relation for
different products 2q0TL. The cw-stiffness used for the the plots is χ = 100.

The tendency for a laser to Q-switch increases with the product q0TL and
decreases if the saturable absorber is hard to saturate, i.e. χÀ 1. As can be
inferred from Fig. 4.18 and eq.(4.60), the laser can never Q-switch, i.e. the
left side of eq.(4.60) is always smaller than the right side, if the quantity

MDF =
2q0TL
χ

< 1 (4.61)

is less than 1. The abbreviation MDF stands for mode locking driving force,
despite the fact that the expression (4.61) governs the Q-switching instabil-
ity. We will see, in the next section, the connection of this parameter with
mode locking. For solid-state lasers with long upper state life times, already
very small amounts of saturable absorption, even a fraction of a percent,
may lead to a large enough mode locking driving force to drive the laser into
Q-switching. Figure 4.19 shows the regions in the χ − P/PL - plane where
Q-switching can occur for fixed MDF according to relation (4.60). The area
above the corresponding MDF-value is the Q-switching region. For MDF <
1, cw-Q-switching can not occur. Thus, if a cw-Q-switched laser has to be
designed, one has to choose an absorber with a MDF >1. The further the op-
eration point is located in the cw-Q-switching domain the more pronounced
the cw-Q-switching will be. To understand the nature of the instability we
look at the eigen solution and eigenvalues of the linearized equations of mo-

Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering
34, no. 7 (July 1995): 2024-2036. 

Image removed due to copyright restrictions.
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Figure 4.19: For a given value of the MDF, cw-Q-switching occurs in the area
above the corresponding curve. For a MDF-value less than 1 cw-Qswitching
can not occur.

tion 4.56
d

dt

µ
∆P0(t)
∆g0(t)

¶
= s

µ
∆P0(t)
∆g0(t)

¶
(4.62)

which results in the eigenvalues

sTR =
A11 +A22

2
± j

s
A11A22 −A12A21 −

µ
A11 +A22

2

¶2
. (4.63)

With the matrix elements according to eq.(4.56) we get

s =
− 2

TR

dq
dP

¯̄
cw
Ps − 1

τstim

2
± jωQ (4.64)

ωQ =

vuut− 2

TR

dq

dP

¯̄̄̄
cw

Ps
r

τL
+

r − 1
τ pτL

−
Ã− 2

TR

dq
dP

¯̄
cw
Ps − 1

τstim

2

!2
.(4.65)

where the pump parameter is now defined as the ratio between small signal
gain the total losses in steady state, i.e. r = g0/(l + qs). This somewhat
lengthy expression clearly shows, that when the system becomes unstable,

Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering
34, no. 7 (July 1995): 2024-2036. 

Image removed due to copyright restrictions.
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−2 dq
dP

¯̄
cw
Ps >

TR
τstim

, with τL À τ p, there is a growing oscillation with fre-
quency

ωQ ≈
s

r − 1
τ pτL

≈
s

1

τ pτ stim
. (4.66)

That is, passive Q-switching can be understood as a destabilization of the
relaxation oscillations of the laser. If the system is only slightly in the instable
regime, the frequency of the Q-switching oscillation is close to the relaxation
oscillation frequency. If we define the growth rate γQ, introduced by the
saturable absorber as a prameter, the eigen values can be written as

s =
1

2

µ
γQ −

1

τ stim

¶
± j

vuutγQ
r

τL
+

r − 1
τ pτL

−
Ã
γQ − 1

τstim

2

!2
. (4.67)

Figure 4.20 shows the root locus plot for a system with and without a sat-
urable absorber. The saturable absorber destabilizes the relaxation oscilla-
tions. The type of bifurcation is called a Hopf bifurcation and results in an
oscillation.

Figure 4.20: Root locus plot for the linearized rate equations. a) Without
saturable absorber as a function of the pump parameter r; b) With saturable
absorber as a function of γQ .
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As an example, we consider a laser with the following parameters: τL =
250µs, TR = 4ns, 2l0 = 0.1, 2q0 = 0.005, 2g0 = 2, PL/PA = 100. The rate
equations are solved numberically and shown in Figures4.21 and 4.22.

Figure 4.21: Phase space plot of the rate equations. It takes several oscilla-
tions, until the steady state limit cycle is reached.

Figure 4.22: Solution for gain and output power as a function of time.
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4.5 Example: Single Mode CW-Q-Switched
Microchip Lasers

Q-switched microchip lasers are compact and simple solid-state lasers, which
can provide a high peak power with a diffraction limited output beam. Due to
the extremely short cavity length, typically less than 1 mm, single-frequency
Q-switched operation with pulse widths well below a ns can be achieved.
Pulse durations of 337 ps and 218 ps have been demonstrated with a passively
Q-switched microchip laser consisting of a Nd:YAG crystal bonded to a thin
piece of Cr4+:YAG [8, 9]. Semiconductor saturable absorbers were used to
passively Q-switch a monolithic Nd:YAG laser producing 100 ns pulses [38].

4.5.1 Set-up of the Passively Q-Switched Microchip
Laser

Figure 4.23(a) shows the experimental set-up of the passively Q-switched
microchip laser and Fig. 4.23(b) the structure of the semiconductor sat-
urable absorber [12, 13]. The saturable absorber structure is a so called
anti-resonant Fabry-Perot saturable absorber (A-FPSA), because in a mi-
crochip laser the beam size is fixed by the thermal lens that builds up in
the laser crystal, when pumped with the diode laser. Thus, one can use the
top reflector of the A-FPSA to scale the effective saturation intensity of the
absorber with respect to the intracavity power. The 200 or 220 µm thick
Nd:YVO4 or Nd:LaSc3(BO3)4, (Nd:LSB) laser crystal [39] is sandwiched be-
tween a 10% output coupler and the A-FPSA. The latter is coated for high
reflection at the pump wavelength of 808 nm and a predesigned reflectivity
at the laser wavelength of 1.062 µ m, respectively. The laser crystals are
pumped by a semiconductor diode laser at 808 nm through a dichroic beam-
splitter, that transmits the pump light and reflects the output beam at 1.064
µm for the Nd:YVO4 or 1.062 µm for the Nd:LSB laser. To obtain short Q-
switched pulses, the cavity has to be as short as possible. The highly doped
laser crystals with a short absorption length of only about 100µm lead to a
short but still efficient microchip laser [13]. The saturable absorber consists
of a dielectric top mirror and 18 pairs of GaAs/InGaAs MQW’s grown on a
GaAs/AlAs Bragg-mirror. The total optical thickness of the absorber is on
the order of 1 µm. Therefore, the increase of the cavity length due to the
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Figure 4.23: /a) Experimental set-up of the cw-passively Q-switched
Nd:YVO4 microchip-laser. (b) Structure of the anti-resonant Fabry-Perot
semiconductor saturable absorber [37].
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Figure 4.24: Single-Mode Q-switched pulse achieved with Nd:YVO4 mi-
crochip laser.

absorber is neglegible. For more details see [12, 13]. Pulses as short as 56 ps,
Fig. (4.24), have been achieved with Nd:LSB-crystals.

4.5.2 Dynamics of a Q-Switched Microchip Laser

The passively Q-switched microchip laser, shown in Fig. 4.23(a), is perfectly
modelled by the rate equations (4.49) to (4.51). To understand the basic
dependence of the cw-Q-switching dynamics on the absorber parameters, we
performed numerical simulations of the Nd:LSB microchip laser, as shown
in Fig. 4.23. The parameter set used, is given in Table 4.2. For these pa-
rameters, we obtain according to eq.(4.55) a mode locking driving force of
MDF = 685. This laser operates clearly in the cw-Q-switching regime as
soon as the laser is pumped above threshold. Note, the Q-switching condi-
tion (4.61) has only limited validity for the microchip laser considered here,
because, the cavity length is much shorter than the absorber recovery time.
Thus the adiabatic elimination of the absorber dynamics is actually not any
longer justified. Figures 4.25 and 4.26 show the numerical solution of the set
of rate equations (4.49) to (4.51) on a microsecond timescale and a picosecond
timescale close to one of the pulse emission events.
No analytic solution to the set of rate equations is known. Therefore,

optimization of Q-switched lasers has a long history [4, 5], which in general
results in complex design criteria [5], if the most general solution to the rate
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parameter value
2 g0 0.7
2 q0 0.03
2 l 0.14
TR 2.7 ps
τL 87 µs
τA 24 ps
EL 20 µJ
EA 7.7 nJ

Table 4.2: Parameter set used for the simulation of the dynamics of the
Q-switched microchip laser.
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Figure 4.25: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a microsecond timescale.
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Figure 4.26: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a picosecond timescale.

equations is considered. However, a careful look at the simulation results
leads to a set of very simple design criteria, as we show in the following.
As seen from Fig. 4.25, the pulse repetition time Trep is many orders of
magnitude longer than the width of a Q-switched pulse. Thus, between two
pulse emissions, the gain increases due to pumping until the laser reaches
threshold. This is described by eq.(4.50), where the stimulated emission
term can be neglected. Therfore, the pulse repetition rate is determined by
the relation that the gain has to be pumped to threshold again gth = l + q0,
if it is saturated to the value gf after pulse emission. In good approximation,
gf = l− q0, as long as it is a positive quantity. If Trep < τL, one can linearize
the exponential and we obtain

gth − gf = g0
Trep
τL

(4.68)

Trep = τL
gth − gf

g0
= τL

2q0
g0

. (4.69)

Figure 4.26 shows, that the power increases, because, the absorber saturates
faster than the gain. To obtain a fast raise of the pulse, we assume an
absorber which saturates much easier than the gain, i.e. EA ¿ EL, and the
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recovery times of gain and absorption shall be much longer than the pulse
width τ pulse, τA À τ pulse. Since, we assume a slow gain and a slow absorber,
we can neglect the relaxation terms in eqs.(4.50) and (4.51) during growth
and decay of the pulse. Then the equations for gain and loss as a function
of the unknown Q-switched pulse shape fQ(t)

P (t) = EPfQ(t) (4.70)

can be solved. The pulse shape fQ(t) is again normalized, such that its
integral over time is one and EP is, therefore, the pulse energy. Analogous to
the derivation for the Q-switched mode locking threshold in eqs.(4.84) and
(4.85), we obtain

q(t) = q0 exp

∙
−EP

EA

Z t

−∞
fQ(t

0)dt0
¸
, (4.71)

g(t) = gth exp

∙
−EP

EL

Z t

−∞
fQ(t

0)dt0
¸
. (4.72)

Substitution of these expressions into the eq.(4.49) for the laser power, and
integration over the pulse width, determines the extracted pulse energy. The
result is a balance between the total losses and the gain.

l + qP (EP ) = gP (EP ) (4.73)

with

qP (EP ) = q0
1− exp

h
−EP

EA

i
EP
EA

, (4.74)

gP (EP ) = gth
1− exp

h
−EP

EL

i
EP
EL

. (4.75)

Because, we assumed that the absorber is completely saturated, we can
set qP (EP ) ≈ 0. Figure 4.27 shows the solution of eq.(4.73), which is the
pulse energy as a function of the ratio between saturable and nonsaturable
losses s = q0/l. Also approximate solutions for small and large s are shown
as the dashed curves. Thus, the larger the ratio between saturable and
nonsaturable losses is, the larger is the intracavity pulse energy, which is not
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Figure 4.27: (–) Intracavity pulse energy as a function of the ratio between
saturable and nonsaturable losses s. (- - -) Approximations for small and
large values for s.

surprising. Note, the extracted pulse energy is proportional to the output
coupling, which is 2l if no other losses are present. If we assume, s << 1,
then, we can use approximately the low energy approximation

EP = 2EL
q0

l + q0
. (4.76)

The externally emitted pulse energy is then given by

Eex
P = 2lEP = EL

4lq0
l + q0

. (4.77)

Thus, the total extracted pulse energy is completely symmetric in the sat-
urable and non saturable losses. For a given amount of saturable absorption,
the extracted pulse energy is maximum for an output coupling as large as
possible. Of course threshold must still be reached, i.e. l + q0 < g0. Thus,
in the following, we assume l > q0 as in Fig. 4.26. The absorber is immedi-
atelly bleached, after the laser reaches threshold. The light field growth and
extracts some energy stored in the gain medium, until the gain is saturated
to the low loss value l. Then the light field decays again, because the gain
is below the loss. During decay the field can saturate the gain by a similar
amount as during build-up, as long as the saturable losses are smaller than
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the constant output coupler losses l, which we shall assume in the following.
Then the pulse shape is almost symmetric as can be seen from Fig. 4.26(b)
and is well approximated by a secant hyperbolicus square for reasons that
will become obvious in a moment. Thus, we assume

fQ(t) =
1

2τP
sech2

µ
t

τ p

¶
. (4.78)

With the assumption of an explicite pulse form, we can compute the pulse
width by substitution of this ansatz into eq.(4.49) and using (4.71), (4.72)

−2TR
τP

tanh

µ
t

τ p

¶
= gth exp

∙
− EP

2EL

µ
1 + tanh

µ
t

τ p

¶¶¸
− l. (4.79)

Again, we neglect the saturated absorption. If we expand this equation up
to first order in EP/EL and compare coefficients, we find from the constant
term the energy (4.77), and from the tanh-term we obtain the following
simple expression for the pulse width

τP = 2
TR
q0

. (4.80)

For the FWHM pulse width of the resulting sech2-pulse we obtain

τP,FWHM = 3.5
TR
q0

. (4.81)

Thus, for optimium operation of a Q-switched microchip laser, with respect
to minimum pulse width and maximum extracted energy in the limits consid-
ered here, we obtain a very simple design criterium. If we have a maximum
small signal round-trip gain g0, we should design an absorber with q0 some-
what smaller than g0/2 and an output coupler with q0 < l < g0− q0, so that
the laser still fullfills the cw-Q-switching condition. It is this simple opti-
mization, that allowed us to reach the shortest pulses every generated from a
cw-Q-switched solid-state laser. Note, for a maximum saturable absorption
of 2 q0 = 13%, a cavity roundtip time of TR = 2.6 ps for the Nd:YVO4 laser,
one expects from (4.81) a pulse width of about τP = 70ps, which is close to
what we observed in the experiment above. We achieved pulses between 56
and 90 ps [13]. The typical extracted pulse energies were on the order of EP

= 0.1 - 0.2 µJ for pulses of about 60ps [13]. Using a saturation energy of
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Figure 4.28: Laser output power as a function of time, when operating in the
Q-switched mode-locked regime.

about EL = 30 µJ and an output coupler loss of 2l = 0.1, we expect, accord-
ing to (4.77), a maximum extracted pulse energy of Eex

P = 2 µJ. Thus, we
have a deviation of one order of magnitude, which clearly indicates that the
absorber still introduces too much of nonsaturable intracavity losses. Low-
ering of these losses should lead to µJ - 50 ps pulses from this type of a
very simple and cheap laser, when compared with any other pulse generation
technique.

4.6 Q-Switched Mode Locking

To understand the regime of Q-switched mode locking, we reconsider the rate
equations (4.49) to (4.51). Fig. 4.28 shows, that we can describe the laser
power on two time scales. One is on the order of the Q-switching envelope
and occurs on multiple round-trips in the laser cavity, T = mTR. Therefore,
it is on the order of microseconds. The other time scale t is a short time scale
on the order of the pulse width, i.e. picoseconds. Assuming a normalized
pulse shape fn(t) for the n-th pulse such thatZ TR/2

−TR/2
fn(t− nTR)dt = 1, (4.82)
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we can make the following ansatz for the laser power

P (T, t) = EP (T )
∞X

n=−∞
fn(t− nTR). (4.83)

Here, EP (T = mTR) is the pulse energy of the m-th pulse, which only changes
appreciably over many round-trips in the cavity. The shape of the m-th pulse,
fm(t), is not yet of further interest. For simplicity, we assume that the mode-
locked pulses are much shorter than the recovery time of the absorber. In this
case, the relaxation term of the absorber in Eq.(4.52) can be neglected during
the duration of the mode-locked pulses. Since the absorber recovery time is
assumed to be much shorter than the cavity round-trip time, the absorber
is unsaturated before the arrival of a pulse. Thus, for the saturation of the
absorber during one pulse, we obtain

q(T = mTR, t) = q0 exp

∙
−EP (T )

EA

Z t

−TR/2
fm(t

0)dt0
¸
. (4.84)

Then, the loss in pulse energy per roundtrip can be written as

qP (T ) =

Z TR/2

−TR/2
fm(t)q(T = mTR, t)dt = q0

1− exp
h
−EP (T )

EA

i
EP (T )
EA

. (4.85)

Eq. (4.85) shows that the saturable absorber saturates with the pulse energy
and not with the average intensity of the laser, as in the case of cw-Q-
switching (4.52). Therefore, the absorber is much more strongly bleached
at the same average power. After averaging Eqs.(4.49) and (4.50) over one
round-trip, we obtain the following two equations for the dynamics of the
pulse energy and the gain on a coarse grained time scale T :

TR
dEP

dT
= 2(g − l − qP (EP ))EP , (4.86)

TR
dg

dT
= −g − g0

TL
− gEP

EL
. (4.87)

This averaging is allowed, because the saturation of the gain medium within
one pulse is negligible, due to the small interaction cross section of the
solid-state laser material. Comparing Eqs.(4.49), (4.50) and (4.52) with
(4.84), (4.86) and (4.87), it becomes obvious that the stability criterion (4.53)
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also applies to Q-switched mode locking if we replace the formula for cw-
saturation of the absorber (4.52) by the formula for pulsed saturation (4.85).
Then, stability against Q-switched mode locking requires

−2EP
dqP
dEP

¯̄̄̄
cw−mod

<
r

TL

¯̄̄̄
cw−mod

, (4.88)

with

−2EP
dqP
dEP

¯̄̄̄
cw−mod

= 2q0
1− exp

h
−EP

EA

i³
1 + EP

EA

´
EP
EA

. (4.89)

When expressed in terms of the average power P = EP/TR, similar to
Eq.(4.60), we obtain

−2TLEP
dqP
dEP

¯̄̄̄
cw−mod

= 2TLq0
1− exp

h
− P

χPPL

i³
1 + P

χPPL

´
P

χPPL

, (4.90)

where χP = χTA describes an effective stiffness of the absorber compared
with the gain when the laser is cw-mode-locked at the same average power
as the cw laser. Thus, similar to the case of cw-Q-switching and mode locking
it is useful to introduce the driving force for Q-switched mode locking

QMDF =
2q0TL
χP

. (4.91)

Figure 4.29 shows the relation (4.88) for different absorber strength. In
going from Fig. 4.18 to Fig. 4.29, we used TA = 0.1. We see, that the
short normalized recovery time essentially leads to a scaling of the abscissa,
when going from Fig. 4.18 to Fig. 4.29 while keeping all other parameters
constant. Comparing Eqs.(4.61) with (4.91), it follows that, in the case of
cw-mode locking, the absorber is more strongly saturated by a factor of
1/TA, which can easily be as large as 1000. Therefore, the Q-switched mode
locking driving force is much larger than the mode locking driving force,
MDF, Accordingly, the tendency for Q-switched mode locking is significantly
higher than for cw Q-switching. However, now, it is much easier to saturate
the absorber with an average power well below the damage threshold of the
absorber (Fig. 4.29). Therefore, one is able to leave the regime of Q-switched
mode locking at a large enough intracavity power.
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Figure 4.29: Visualization of the stability relations for Q-switched mode lock-
ing for different products 2q0TL. The assumed stiffness for pulsed operation
is χP = 10, which corresponds to TA = 0.1. The functional form of the
relations for cw Q-switching and Q-switched mode locking is very similar.
The change in the stiffness, when going from cw to pulsed saturation, thus
essentially rescales the x-axis. For low-temperature grown absorbers, TA can
be as small as 10−6

Figure 4.30: Self-Starting of mode locking and stability against Q-switched
mode locking
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We summarize our results for Q-switched mode locking in Fig. 4.30.
It shows the stability boundary for Q-switched mode locking according to
eq.(4.88), for different strengths of the saturable absorber, i.e. different values
2q0TL. One may also derive minimum critical mode locking driving force for
self-starting modelocking of the laser MDFc due to various processes in the
laser [24][25][27][28]. Or, with the definition of the pulsed stiffness, we obtain

χp,c ≤
2q0TL
MDFc

TA. (4.92)

Thus, for a self-starting laser which shows pure cw-mode locking, we have to
design the absorber such that its MDF is greater than this critical value. Or
expressed differently, the pulsed stiffness has to be smaller than the critical
value χp,c, at a fixed value for the absorber strength q0. There is always
a trade-off: On one hand, the mode locking driving force has to be large
enough for self-starting. On the other hand the saturable absorption has to
be small enough, so that the laser can be operated in a parameter regime
where it is stable against Q-switching mode locking, see Fig. (4.30).

4.7 Summary

Starting from a simple two level laser and absorber model, we characterized
the dynamics of solid-state lasers mode-locked and Q-switched by a saturable
absorber. The unique properties of solid-state laser materials, i.e. their long
upper-state life time and their small cross sections for stimulated emission,
allow for a separation of the laser dynamics on at least two time scales.
One process is the energy build-up and decay, which occurs typically on a
time scale of the upper state lifetime or cavity decay time of the laser. The
other process is the pulse shaping, which occurs within several roundtrips
in the cavity. Separating these processes, we can distinguish between the
different laser dynamics called cw-Q-switching, Q-switched mode locking and
cw-mode locking. We found the stability boundaries of the different regimes,
which give us guidelines for the design of absorbers for a given solid state
laser to favour one of these regimes. Semiconductor absorbers are a good
choice for saturable absorbers to modelock lasers, since the carrier lifetime
can be engineered by low temperature growth [20]. When the pulses become
short enough, the laser pulse saturates the absorber much more efficiently,
which stabilizes the laser against undesired Q-switched mode locking. It has
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been demonstrated experimentally, that this technique can control the laser
dynamics of a large variety of solid-state lasers, such as Nd:YAG, Nd:YLF,
Nd:YV04, [18] in the picosecond regime.
With semiconductor devices and soliton formation due to negative GVD

and SPM, we can use similar semiconductor absorbers to modelock the lasers
in the femtosecond regime [35]. The stability criteria derived here can be ap-
plied to both picosecond and femtosecond lasers. However, the characteristics
of the absorber dynamics may change drastically when going from picosecond
to femtosecond pulses [36]. Especially, the saturation energy may depend not
only on excitation wavelength, but also on the pulsewidth. In addition there
may be additional loss mechanismes for the pulse, for example due to soliton
formation there are additional filter losses of the pulse which couple to the
energy of the pulse via the area theorem. This has to be taken into account,
before applying the theory to fs-laser systems, which will be discussed in
more detail later.
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