Fast Fourier Transform: Theory and Algorithms

Lecture 8
 Vladimir Stojanović

6.973 Communication System Design - Spring 2006 Massachusetts Institute of Technology

Discrete Fourier Transform - A review

- Definition $\quad X_{k}=\sum_{i=0}^{N-1} x_{i} W_{N}^{i k}, k=0, \ldots, N-1, \quad W_{N}=e^{-j 2 \pi / N}$

$$
\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
X_{N-1}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & W_{N} & w_{N}^{2} & w_{N}^{N} & \ldots & W^{N-1} \\
1 & w_{N}^{N} & w_{N}^{N} & w_{N}^{N} & \ldots & W_{N}^{N N-1)} \\
\vdots & \vdots & w_{N}^{N-1} & W_{N}^{2 N-1)} & \vdots & \ldots \\
\hline & \ldots & W_{N}^{(N-1)(N-1)}
\end{array}\right] \times\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{2} \\
x_{3} \\
x_{N-1}
\end{array}\right] .
$$

- $\left\{X_{k}\right\}$ is periodic
- Since $\left\{X_{k}\right\}$ is sampled, $\left\{x_{n}\right\}$ must also be periodic
- From a physical point of view, both are repeated with period N
- Requires $\mathrm{O}\left(\mathrm{N}^{2}\right)$ operations

Fast Fourier Transform History

- Twiddle factor FFTs (non-coprime sub-lengths)
- 1805 Gauss
- Predates even Fourier's work on transforms!
- 1903 Runge
- 1965 Cooley-Tukey
- 1984 Duhamel-Vetterli (split-radix FFT)
- FFTs w/o twiddle factors (coprime sub-lengths)
- 1960 Good's mapping
- application of Chinese Remainder Theorem ~100 A.D.
- 1976 Rader - prime length FFT
- 1976 Winograd's Fourier Transform (WFTA)
- 1977 Kolba and Parks (Prime Factor Algorithm - PFA)

Divide and conquer

$$
\begin{aligned}
& X_{k}=\sum_{i=0}^{N-1} x_{i} W_{N}^{i k}, \quad k=0, \ldots, N-1, \quad W_{N}=\mathrm{e}^{-\mathrm{j} 2 \pi / N} \\
& X(z)=\sum_{i=0}^{N-1} x_{i} z^{-i} . \quad z=W_{N}^{-k}: \\
& X_{k}=X(z)_{z=}=W_{N}^{-k} .
\end{aligned}
$$

- Divide and conquer always has less computations

$$
\begin{aligned}
& X(z)=\sum_{i=0}^{N-1} x_{i} z^{-i}=\sum_{l=0}^{r-1} \sum_{i \in E_{i}} x_{i} z^{-i}, \\
& X(z)=\sum_{l=0}^{r-1} z^{-i_{0} t} \sum_{i \in I_{i}} x_{i} z^{-i+i_{l} l} .
\end{aligned}
$$

Suppose all I_{I} sets have same number of elements N_{1} so, $\mathrm{N}=\mathrm{N}_{1}{ }^{*} \mathrm{~N}_{2}, \mathrm{r}=\mathrm{N}_{2}$

Each inner-most sum takes $\mathrm{N}_{1}{ }^{2}$ multiplications
The outer sum will need N_{2} multiplications per output point $\mathrm{N}_{2}{ }^{*} \mathrm{~N}$ for the whole sum (for all output points)
\square Hence, total number of multiplications

$$
N_{2} \cdot N+N_{2} \cdot N_{1}^{2}=N_{1} \cdot N_{2}\left(N_{1}+N_{2}\right)<N_{1}^{2} \cdot N_{2}^{2} \quad \text { if } N 1, N 2>2
$$

Generalizations

$$
X(z)=\sum_{i=0}^{r-1} z^{-b_{0}} \sum_{i \in I_{i}} x_{i} z^{-i+i_{0_{1}}} .
$$

- The inner-most sum has to represent a DFT
- Only possible if the subset (possibly permuted)
- Has the same periodicity as the initial sequence
- All main classes of FFTs can be cast in the above form
\square Both sums have same periodicity (Good's mapping)
- No permutations (i.e. twiddle factors)
- All the subsets have same number of elements $m=N / r$
- (m, r) $=1$ - i.e. m and r are coprime
- If not, then inner sum is one stap of radix-r FFT
- If $r=3$, subsets with $N / 2, N / 4$ and $N / 4$ elements
- Split-radix algorithm

The cost of mapping

- The goal for divide and conquer $\quad x(z)=\sum_{t=0}^{\prime-1} z^{--b_{0}} \sum_{i=1}^{n=1} x_{2} x^{-i+t_{6}}$.
$\sum \operatorname{cost}($ subproblems $)+\operatorname{cost}($ mapping $)$
$<\operatorname{cost}$ (original problem).
- Different types balance mapping with subproblem cost
- E.g. in radix-2
- subproblems are trivial (only sum and differences)
- Mapping requires twiddle factors (large number of multiplies)
- E.g. in prime-factor algorithm
- Subproblems are DFTs with coprime lengths (costly)
- Mapping trivial (no arithmetic operations)

FFTs with twiddle factors

- Reintroduced by Cooley-Tukey '65

Start from general divide and conquer

Keep periodicity compatible with periodicity of the input sequence

Use decimation

$$
N=N_{1} \cdot N_{2} . \quad\left\{x_{i} \mid i=0, \ldots, N-1\right\} \quad\left\{x_{i} \mid i \in I_{l}\right\}
$$

$$
\begin{gathered}
W_{N}^{i N_{1}}=\mathrm{e}^{-\mathrm{j} 2 \pi N_{1} i / N}=\mathrm{e}^{-\mathrm{j} 2 \pi i / N_{2}}=W_{N_{2}}^{i} \\
X_{k}=\sum_{n_{1}=0}^{N_{1}-1} W_{N}^{n_{1} k} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} W_{N_{2}}^{n_{2} k} . \\
\text { almost } \mathrm{N}_{1} \text { DFTs of size } \mathrm{N}_{2}
\end{gathered}
$$

$$
\begin{aligned}
& X_{k}=\sum_{i=0}^{N-1} x_{i} W_{N}^{i k}, \quad k=0, \ldots, N-1, \quad W_{N}=\mathrm{e}^{-\mathrm{j} 2 \pi / N} \\
& X(z)=\sum_{i=0}^{N-1} x_{i} z^{-i} . \quad z=W_{N}^{-k}: \\
& X(z)=\sum_{i=0}^{N-1} x_{i} z^{-i}=\sum_{i=0}^{r-1} \sum_{i \in I_{i}} x_{i} z^{-i}, \\
& X(z)=\sum_{l=0}^{r-1} z^{-i_{0 l}} \sum_{i \in I_{i}} x_{i} z^{-i+i_{0 l}} . \\
& I_{n_{1}}=\left\{n_{2} N_{1}+n_{1}\right\}, \\
& n_{1}=0, \ldots, N_{1}-1, \quad n_{2}=0, \ldots, N_{2}-1, \\
& X(z)=\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} z^{-\left(n_{2} N_{1}+n_{1}\right)} \\
& X(z)=\sum_{n_{1}=0}^{N_{1}-1} z^{-n_{1}} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} z^{-n_{2} N_{1}}, \\
& X_{k}=\left.X(z)\right|_{z=W_{N}^{-k}} \\
& =\sum_{n_{1}=0}^{N_{1}-1} W_{N}^{n_{1} k} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} W_{N}^{n_{2} N_{1} k} .
\end{aligned}
$$

Cooley-Tukey FFT contd.

$$
\begin{aligned}
& X_{k}=\sum_{n_{1}=0}^{N_{1}-1} W_{N}^{n_{1} k} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} W_{N_{2}}^{n_{2} k} . \\
& Y_{n_{1}, k}=\sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} W_{N_{2}}^{n_{2} k} . \\
& \text { can be taken mod } \mathrm{N}_{2} \\
& W_{N_{2}}^{k}=W_{N_{2}}^{N_{2}+k^{\prime}}=W_{N_{2}}^{N_{2}} \cdot W_{N_{2}}^{k^{\prime}}=W_{N_{2}}^{k^{\prime}} . \\
& Y_{n_{1}, k}=Y_{n_{1}, k_{2}} \quad \text { 1. } \mathrm{N}_{1} \text { DFTs of length } \mathrm{N}_{2} \\
& X_{k}=\sum_{n_{1}=0}^{N_{1}-1} Y_{n_{1}, k} W_{N}^{n_{1} k} . \\
& k=k_{1} N_{2}+k_{2} \\
& k_{1}=0, \ldots, N_{1}-1, \quad k_{2}=0, \ldots, N_{2}-1 . \\
& X_{k_{1} N_{2}+k_{2}}=\sum_{n_{1}=0}^{N_{1}-1} Y_{n_{1}, k_{2}} W_{N}^{n_{1}\left(k_{1} N_{2}+k_{2}\right)}, \\
& X_{k_{1} N_{2}+k_{2}}=\sum_{n_{1}=0}^{N_{1}-1} Y_{n_{1}, k_{2}} W_{N}^{n_{1} k_{2}} W_{N_{1}}^{n_{1} k_{1}} . \\
& Y_{n_{1}, k_{2}}^{\prime}=Y_{n_{1}, k_{2}} W_{N}^{n_{N} k_{2}} . \\
& \text { 2. } \mathrm{N} \text { multplications with twiddle factors } \\
& X_{k_{1} N_{2}+k_{2}}=\sum_{n_{1}=0}^{N_{1}-1} Y_{n_{1}, k_{2}}^{\prime} W_{N_{1}}^{n_{1} k_{1}} .
\end{aligned}
$$

- Step 1: Evaluate N_{1} DFTs of length N_{2}
- Step 2: N multiplications with twiddle factors
- Step 3: Evaluate N_{2} DFTs of length N_{1}
- Vector x_{i} mapped to matrix $\mathrm{x}_{\mathrm{n} 1, \mathrm{n} 2}\left(\mathrm{~N}_{1} \mathrm{xN}_{2}\right)$
- Compute N_{1} DFTs of length N_{2} on each row
- Point-to-point multiply with twiddle factors
- Compute N2 DFTs of length N1 on the columns

2-D view of Cooley-Tukey mapping

- $N=15\left(N_{1}=3, N_{2}=5\right)$

Figure by MIT OpenCourseWare.

- Cannot exchange the order of DFTs
- Because of twiddle multiply
- Different mapping for N1=5, N2=3

x_{0}	x_{5}	x_{10}
x_{1}	x_{6}	x_{11}
x_{2}	x_{7}	x_{12}
x_{3}	x_{8}	x_{13}
x_{4}	x_{9}	x_{14}

- Not just transpose

Radix 2 and radix 4 algorithms

- Lengths as powers of 2 or 4 are most popular
- Assume $\mathrm{N}=2^{\mathrm{n}}$
- $N_{1}=2, N_{2}=2^{n-1}$ (divides input sequence into even and odd samples - decimation in time - DIT)
$X_{k_{2}}=\sum_{n_{2}=0}^{N / 2-1} x_{2 n_{2}} W_{N / 2}^{n+2}$
$+W_{N}^{k} \sum_{n_{2}=0}^{1 / 2-1} x_{2 n+1} W_{N / 2}^{n / 2}$,
$Y_{n_{1}, k}=\sum_{m_{2}=0}^{N_{2}-1} x_{m_{2} N_{1}+m_{1}} W_{N_{2},}^{n_{2},}$
$Y_{n, k_{2}}^{\prime}=Y_{n, k_{2}} W_{N}^{k_{2}, k_{2}}$.
$X_{k_{1}, N_{2}+k_{2}}=\sum_{m_{1}=0}^{N_{1}-1} Y_{m_{1, k}^{\prime}, k_{2}}^{W_{N_{1}, k_{1}}^{n}}$
$X_{N / 2+k_{2}}={ }_{n_{2}=0}^{N / 2-1} x_{2 n_{2}} W_{N / 2}^{n, k_{2}}$
$-W_{s}^{k} \sum_{n_{2}=0}^{1 / 2-1} x_{x_{2}+1} W_{N / 2}^{n}$.
"Butterfly"
(sum or difference followed or
preceeded by a twiddle factor multiply)
- X_{m} and $X_{N / 2+m}$ outputs of N/2 2-pt DFTs on outputs of 2, N/2-pt DFTs weighted with twiddle factors

DIT radix-2 implementations

- Several different ways
- Reorder the input data
- Input samples for inner DFTs in subsequent locations
- Results in bit-reversed input, in-order output DIT
- Selectively compute DFTs on evens and odds
- Perform in-place computation
- Output in bit-reversed order (X3 in position six (011->110))

Figure by MIT OpenCourseWare.
Which type is this implementation?

Decimation in frequency (DIF) radix-2 implementation

- If reverse the role of N_{1} and N_{2}, get DIF

- $\mathrm{N}_{1}=\mathrm{N} / 2, \mathrm{~N}_{2}=2$

Figure by MIT OpenCourseWare.
6.973 Communication System Design

Duality DIT<->DIF

Figure by MIT OpenCourseWare.

- Which one is DIT (DIF)?
 - How can we get one from another?

Complexity of radix-2 FFTs

- DFT of length N replaced by two length-N/2
- At the cost of N complex multiplications (twiddle)
- And N complex additions (2pt DFTs)
- Iterate the scheme $\log _{2} \mathrm{~N}-1$ times
- Obtain trivial transforms (length 2) of the length-N/2 DFTs

$$
\begin{aligned}
& \mathrm{O}_{\mathrm{M}}\left[\mathrm{DFT}_{\mathrm{radix}-2}\right] \approx N / 2\left(\log _{2} N-1\right) \\
& \mathrm{O}_{\mathrm{A}}\left[\mathrm{DFT}_{\mathrm{radix}-2}\right] \approx N\left(\log _{2} N-1\right)
\end{aligned}
$$

- Twiddle multiplies $\left(\mathrm{W}_{\mathrm{N}}{ }^{\mathrm{i}}\right)$
- Complex multiply - 3 real mult + 3 real add
- If i is multiple of $\mathrm{N} / 4$, no arithmetic operation required (why?)

$$
\begin{aligned}
& M\left[\mathrm{DFT}_{\mathrm{radix}-2}\right]=3 N / 2 \log _{2} N-5 N+8, \quad 4 \text { butterflies (one general, } 3 \text { special cases) } \\
& A\left[\mathrm{DFT}_{\mathrm{radix}-2}\right]=7 N / 2 \log _{2} N-5 N+8 .
\end{aligned}
$$

Radix-4

\square
$\mathrm{N}=4 \mathrm{n}, \mathrm{N}_{1}=4, \mathrm{~N}_{2}=\mathrm{N} / 4$

- 4 DFTs of length $\mathrm{N} / 4$
- 3N/4 twiddle multiplies
- N/4 DFTs of length 4
- Cost of length-4 DFT
- No multiplication
- Only 16 real additions

- Reduces the number of stages to $\log _{4} \mathrm{~N}$ Figueby mr opencoussemae

```
O
M[DFT radix-4]
    =9N/8 知2N-43N/12+16/3,
A[DFT radix-4]
    =25N/8 矢2 N-43N/12+16/3.
```

$$
\begin{aligned}
& \mathrm{O}_{\mathrm{M}}\left[\mathrm{DFT}_{\text {radix-2 }}\right] \approx N / 2\left(\log _{2} N-1\right) \\
& M\left[\mathrm{DFT}_{\text {radix-2 }}\right]=3 N / 2 \log _{2} N-5 N+8, \\
& A\left[\mathrm{DFT}_{\text {radix-2 }}\right]=7 N / 2 \log _{2} N-5 N+8
\end{aligned}
$$

- Radix-8 can reduce number of operations even more

Mixed-radix and Split-radix

- Mixed-radix
- Diferent radices in different stages
- Split-radix
- Different radices in the same stage
- Simultaneously on different parts of the transform
- Can achieve lowest number of adds and multiplies for length 2^{n} inputs

Figure by MIT OpenCourseWare.

Split-radix (DIF SRFFT)

- Look at DIF radix-2
- $\mathrm{X}_{2 k 1}$ don't have twiddles

$$
\begin{aligned}
& X_{2 k_{1}}=\sum_{n_{1}=0}^{N / 2-1} W_{N / 2}^{n_{1} k_{1}}\left(x_{n_{1}}+x_{N / 2+n_{1}}\right), \\
& X_{2 k_{1}+1}=\sum_{n_{1}=0}^{N / 2-1} W_{N / 2}^{n_{1} k_{1}} W_{N}^{n_{1}}\left(x_{n_{1}}-x_{N / 2+n_{1}}\right)
\end{aligned}
$$

$$
\begin{gathered}
X_{2 k_{1}}=\sum_{n_{1}=0}^{N / 2-1} W_{N / 2}^{n_{1} k_{1}}\left(x_{n_{1}}+x_{N / 2+n_{1}}\right), \\
X_{4 k_{1}+1}= \\
\sum_{n_{1}=0}^{N / 4-1} W_{N / 4}^{n_{1} k_{1}} W_{N}^{n_{1}} \\
\mathrm{X}\left[\left(x_{n_{1}}-x_{N / 2+n_{1}}\right)\right. \\
\\
\left.+\mathrm{j}\left(x_{n_{1}+N / 4}-x_{n_{1}+3 N / 4}\right)\right], \\
\\
X_{4 k_{1}+3}= \\
\sum_{n_{1}=0}^{N / 4-1} W_{N / 4}^{n_{1} k_{1}} W_{N}^{3 n_{1}}
\end{gathered}
$$

Figure by MIT OpenCourseWare.

- Even samples $X_{2 k}$ in DIF should be computed separately from other samples
- With same algorithm (recursively) as the original sequence
- No general rule for odd samples
- Radix-4 is more efficient than radix-2
- Higher radices are inefficient

Split-radix (DIT SRFFT)

- Dual to DIF SRFFT
- Considers separately subsets $\left\{\mathrm{x}_{2 i}\right\},\left\{\mathrm{x}_{4 i+1}\right\}$ and $\left\{\mathrm{X}_{4 i+3}\right\}$

$$
\begin{aligned}
\boldsymbol{I}_{0}= & \{2 i\}, \boldsymbol{I}_{1}=\{4 i+1\}, \boldsymbol{I}_{2}=\{4 i+3\} \\
X_{k}= & \sum_{\boldsymbol{I}_{0}} x_{2 i} W_{N}^{k(2 i)}+W_{N}^{k} \sum_{I_{1}} x_{4 i+1} W_{N}^{k(4 i+1)-k} \\
& +W_{N}^{3 k} \sum_{\boldsymbol{I}_{2}} x_{4 i+3} W_{N}^{k(4 i+3)-3 k}
\end{aligned}
$$

- Redundancy in $\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{\mathrm{k}+\mathrm{N} / 4}, \mathrm{X}_{\mathrm{k}+\mathrm{N} / 2}, \mathrm{X}_{\mathrm{k}+3 \mathrm{~N} / 4}$ computation

$$
\begin{aligned}
X_{k}= & \sum_{i=0}^{N / 2-1} x_{2 i} W_{N / 2}^{i k}+W_{N}^{k} \sum_{i=0}^{N / 4-1} x_{4 i+1} W_{N / 4}^{i k}+W_{N}^{3 k} \sum_{i=0}^{N / 4-1} x_{4 i+3} W_{N / 4}^{i k} \\
X_{k+N / 4}= & \sum_{i=0}^{N / 2-1} x_{2 i} W_{N / 2}^{i k} \\
& +\mathrm{j} W_{N}^{k} \sum_{i=0}^{N / 4-1} x_{4 i+1} W_{N / 4}^{i k} \\
& -\mathrm{j} W_{N}^{3 k} \sum_{i=0}^{N / 4-1} x_{4 i+3} W_{N / 4}^{i k} \\
& M\left[\mathrm{DFT}_{\text {split-radix }}\right]=N \log _{2} N-3 N+4
\end{aligned}
$$

$$
X_{k+N / 2}=\sum_{i=0}^{N / 2-1} x_{2 i} W_{N / 2}^{i k}
$$

$$
-W_{N}^{k} \sum_{i=0}^{N / 4-1} x_{4 i+1} W_{N / 4}^{i k}
$$

$$
-W_{N}^{3 k} \sum_{i=0}^{N / 4-1} x_{4 i+3} W_{N / 4}^{i k}
$$

$$
X_{k+3 N / 4}=\sum_{i=0}^{N / 2-1} x_{2 i} W_{N / 2}^{i k}
$$

$$
-\mathrm{j} W_{N}^{k} \sum_{i=0}^{N / 4-1} x_{4 i+1} W_{N / 4}^{i k}
$$

$$
A\left[\mathrm{DFT}_{\text {split-radix }}\right]=3 N \log _{2} N-3 N+4
$$

6.973 Communication System Design

$$
+\mathrm{j} W_{N}^{3 k} \sum_{i=0}^{N / 4-1} x_{4 i+3} W_{N / 4}^{i k}
$$

FFTs without twiddle factors

- Divide and conquer requirements
- N-long DFT computed from DFTs with lengths that are factors of N (allows the inner sum to be a DFT)
- Provided that subsets I_{1} guarantee periodic x_{i}

$$
\begin{aligned}
X(z) & =\sum_{n_{1}=0}^{N_{1}-1} z^{-n_{1}} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} z^{-n_{2} N_{1}}, \\
X_{k} & =\left.X(z)\right|_{z}=W_{N}^{-k} \\
& =\sum_{n_{1}=0}^{N_{1}-1} W_{N}^{n_{1} k} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2} N_{1}+n_{1}} W_{N}^{n_{2} N_{1} k} .
\end{aligned}
$$

$$
\begin{aligned}
& X(z)=\sum_{i=0}^{N-1} x_{i} z^{-i}=\sum_{i=0}^{r-1} \sum_{i \in i_{i}} x_{i} z^{-i}, \\
& X(z)=\sum_{i=0}^{r-1} z^{-b_{0}} \sum_{i \in i_{i}} x_{i} z^{-i+b_{i j l}} .
\end{aligned}
$$

- When N factors into co-prime factors $\mathrm{N}=\mathrm{N}_{1}{ }^{*} \mathrm{~N}_{2}$
- Starting from any x_{i} form subset with compatible periodicity (the periodicity of the subset divides the periodicity of the set)

$$
\left\{x_{i+N_{1} n_{2}} \mid n_{2}=1, \ldots, N_{2}-1\right\} \text { or }\left\{x_{i+N_{2} n_{1}} \mid n_{1}=1, \ldots, N_{1}-1\right\}
$$

- Both subsets have only one common point x_{i}
- Allows a rearrangement of the input (periodic) vector into a matrix with a periodicity in both dimensions (rows and columns), both periodicities being comatible with the initial one

Good's mapping

- FFTs without twiddle factors all based on the same mapping
- Turns original transform into a set of small DFTs with coprime lengths
$\left\{x_{i+N_{1} n_{2}} \mid n_{2}=1, \ldots, N_{2}-1\right\}$ or $\left\{x_{i+N_{2} n_{1}} \mid n_{1}=1, \ldots, N_{1}-1\right\}$
equivalent to

$$
\begin{aligned}
& i=\left\langle n_{1} \cdot N_{2}+n_{2} \cdot N_{1}\right\rangle_{N}, \\
& n_{1}=1, \ldots, N_{1}-1, \quad n_{2}=1, \ldots, N_{2}-1 \\
& N=N_{1} N_{2},
\end{aligned}
$$

Figure by MIT OpenCourseW.Vare.

- This mapping is one-to-one if N1 and N2 are coprime
- All congruences modulo N1 obtained
- For a given congruence modulo N2 and vice versa

Just another arrangement of CRT

- Chinese Remainder Theorem (CRT)
- If we know the residue of some number k modulo two coprime numbers N_{1} and $\mathrm{N}_{2} \quad\langle k\rangle_{N_{1}} \quad\langle k\rangle_{N_{2}}$
- It is possible to reconstruct $\langle k\rangle_{N_{1} N_{2}}$
- Let $\langle k\rangle_{N_{1}}=k_{1}\langle k\rangle_{N_{2}}=k_{2}$
- Then $\langle k\rangle_{N_{1} N_{2}}=\left\langle N_{1} t_{1} k_{2}+N_{2} t_{2} k_{1}\right\rangle_{N}$

$$
\left\langle t_{1} N_{1}\right\rangle_{N_{2}}=1 \text { and }\left\langle t_{2} N_{2}\right\rangle_{N_{1}}=1
$$

t_{1} multiplicative inverse of N_{1} mod N_{2}
t_{2} multiplicative inverse of $\mathrm{N}_{2} \bmod \mathrm{~N}_{1}$
t_{1}, t_{2} always exist since N_{1}, N_{2} coprime $\left(N_{1}, N_{2}\right)=1$
What are t_{1}, t_{2} for $N_{1}=3, N_{2}=5$?

- Reversing N_{1} and N_{2}

Figure by MIT OpenCourseWare.

- Results in transposed mapping

Impact on DFT

- Formulating the true multi-dimensional transform

$$
\langle k\rangle_{N_{1} N_{2}}=\left\langle N_{1} t_{1} k_{2}+N_{2} t_{2} k_{1}\right\rangle_{N}
$$

$X_{k}=\sum_{i=0}^{N-1} x_{i} W_{N}^{i k}, k=0, \ldots, N-1$,
$X_{N_{1} t_{1} k_{2}}+N_{2} r_{2} k_{1}=\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{1} N_{2}+n_{2} N_{1}} W_{N}^{\left(n_{1} N_{2}+N_{1} n_{2}\right)\left(N_{1} t_{1} k_{2}+N_{2} t_{2} k_{1}\right)}$
$W_{N}^{N_{2}}=W_{N_{1}} \quad W_{N_{1}}^{N_{2} t_{2}}=W_{N_{1}}^{\left(N_{2} t_{2}\right)_{N_{1}}}=W_{N_{1}}$
$X_{N_{1} t_{1} k_{2}+N_{2} t_{2} k_{1}}=\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{1} N_{2}+n_{2} N_{1}} W_{N_{1}}^{n_{1} k_{2}} W_{N_{2}}^{n_{2} k_{2}}$,

Figure by MIT OpenCourseWare.

True bidimensional transform! (no extra twiddle factors)

Figure by MIT OCW.

Using convolution to compute DFTs

- All sub DFTs are prime length
- Rader showed that prime-length DFTs can be computed as a result of cyclic convolution
- E.g. length 5 DFT

Permute last two rows and columns

$$
\left[\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{4}^{\prime} \\
X_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
W_{5}^{1} & W_{5}^{2} & W_{5}^{4} & W_{5}^{3} \\
W_{s}^{2} & W_{5}^{4} & W_{5}^{3} & W_{5}^{1} \\
W_{5}^{4} & W_{5}^{3} & W_{5}^{3} & W_{5}^{1}
\end{array} W_{5}^{2} W_{5}^{2}\right.
$$

Cyclic correlation
(a convolution with a reversed sequence)

- This is a general result

Example

- Results in smallest number of multiplies

$$
\begin{aligned}
& \left(X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{4}^{\prime}\right)^{\top} \\
& =C \cdot D \cdot B \cdot\left(x_{0}, x_{1}, \ldots, x_{4}\right)^{\mathrm{T}} \\
& C=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & -1 & 0 \\
1 & 1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 0 & -1 \\
1 & 1 & 1 & -1 & 1 & 0
\end{array}\right] \\
& D=\operatorname{diag}[1,((\cos u+\cos 2 u) / 2-1) \text {, } \\
& (\cos u-\cos 2 u) / 2,-\mathrm{j} \sin u, \\
& -\mathrm{j}(\sin u+\sin 2 u) \text {, } \\
& \mathrm{j}(\sin u-\sin 2 u)], \\
& B=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 1 & -1 & 1 & -1 \\
0 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Prime Factor Algorithm

Figure by MIT OpenCourseWare.

- Efficient small DFTs are a key to the feasibility of this algorithm
$M_{N_{1} N_{2}}=N_{1} M_{2}+N_{2} M_{1}$,
$A_{N_{1} N_{2}}=N_{1} A_{2}+N_{2} A_{1}$,
$m_{N_{1} N_{2} N_{3} N_{4}}=m_{N_{1}}+m_{N_{2}}+m_{N_{3}}+m_{N_{4}}$,
$a_{N_{1} N_{2} N_{3} N_{4}}=a_{N_{1}}+a_{N_{2}}+a_{N_{3}}+a_{N_{4}}$.

Winograd's Fourier Transform Algorithm

$$
\begin{aligned}
& \boldsymbol{X}=F_{1} x F_{2}^{\mathrm{T}} \\
& \boldsymbol{X}=C_{1} D_{1} B_{1} x B_{2}^{\mathrm{T}} D_{2} C_{2}^{\mathrm{T}} .
\end{aligned}
$$

Figure by MIT OpenCourseWare.

- $\mathrm{B}_{1} \times \mathrm{B}_{2}^{\prime}$ only involves additions
- D - diagonal (so point multiply)
- Winograd transform has many more additions than twiddle FFTs

