Fast Fourier Transform: Theory and Algorithms

Lecture 8 Vladimir Stojanović

6.973 Communication System Design – Spring 2006 Massachusetts Institute of Technology

Discrete Fourier Transform – A review

$$\begin{array}{c} \square \quad \text{Definition} \quad X_{k} = \sum_{i=0}^{N-1} x_{i} W_{N}^{ik}, \quad k = 0, \dots, N-1, \quad W_{N} = e^{-j2\pi/N} \\ \begin{bmatrix} X_{0} \\ \cdot X_{1} \\ X_{2} \\ \vdots \\ \vdots \\ X_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W_{N} & W_{N}^{2} & W_{N}^{3} & \dots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{4} & W_{N}^{6} & \dots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \dots & \dots & W_{N}^{(N-1)(N-1)} \end{bmatrix} \times \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{3} \\ \vdots \\ x_{N-1} \end{bmatrix}.$$

- $\{X_k\}$ is periodic
 - Since {X_k} is sampled, {x_n} must also be periodic
- From a physical point of view, both are repeated with period N
- Requires O(N²) operations

6.973 Communication System Design

Fast Fourier Transform History

- Twiddle factor FFTs (non-coprime sub-lengths)
 - 1805 Gauss

Gauss, C. F., "Nachlass: Theoria interpolationis methodo nova tractata," pp. 265–303, in *Carl Friedrich Gauss, Werke, Band 3*, Göttingen: Königlichen Gesellschaft der Wissenschaften, 1866.

- Predates even Fourier's work on transforms!
- 1903 Runge
- 1965 Cooley-Tukey
- 1984 Duhamel-Vetterli (split-radix FFT)
- FFTs w/o twiddle factors (coprime sub-lengths)
 - 1960 Good's mapping
 - application of Chinese Remainder Theorem ~100 A.D.
 - 1976 Rader prime length FFT
 - 1976 Winograd's Fourier Transform (WFTA)
 - 1977 Kolba and Parks (Prime Factor Algorithm PFA)

6.973 Communication System Design

Divide and conquer

$$X_{k} = \sum_{i=0}^{N-1} x_{i} W_{N}^{ik}, \quad k = 0, \dots, N-1, \quad W_{N} = e^{-j2\pi/N}$$
$$X(z) = \sum_{i=0}^{N-1} x_{i} z^{-i}, \quad z = W_{N}^{-k};$$
$$X_{k} = X(z)_{z = W_{N}^{-k}}.$$

Divide and conquer always has less computations

 $X(z) = \sum_{i=0}^{N-1} x_i z^{-i} = \sum_{l=0}^{r-1} \sum_{i \in I_i} x_i z^{-i},$ $X(z) = \sum_{l=0}^{r-1} z^{-i_{0l}} \sum_{i \in I_i} x_i z^{-i+i_{0l}}.$ Suppose all I₁ sets have same number of elements N₁ so, N=N₁*N₂, r=N₂ Each inner-most sum takes N₁² multiplications The outer sum will need N₂ multiplications per output point N₂*N for the whole sum (for all output points)

Hence, total number of multiplications

 $N_2 \cdot N + N_2 \cdot N_1^2 = N_1 \cdot N_2(N_1 + N_2) < N_1^2 \cdot N_2^2$ if N1, N2>2

6.973 Communication System Design

Generalizations

$$X(z) = \sum_{l=0}^{r-1} z^{-i_{0l}} \sum_{i \in I_l} x_i z^{-i+i_{0l}}.$$

- The inner-most sum has to represent a DFT
 - Only possible if the subset (possibly permuted)
 - Has the same periodicity as the initial sequence
 - All main classes of FFTs can be cast in the above form
- Both sums have same periodicity (Good's mapping)
 - No permutations (i.e. twiddle factors)
 - All the subsets have same number of elements m=N/r
 - (m,r)=1 i.e. m and r are coprime
- If not, then inner sum is one stap of radix-r FFT
- □ If r=3, subsets with N/2, N/4 and N/4 elements
 - Split-radix algorithm

The cost of mapping

The goal for divide and conquer

$$X(z) = \sum_{l=0}^{r-1} z^{-i_{0l}} \sum_{i \in I_l} x_i z^{-i+i_{0l}}.$$

 $\sum \text{cost(subproblems)} + \text{cost(mapping)}$

<cost(original problem).

- Different types balance mapping with subproblem cost
- E.g. in radix-2
 - subproblems are trivial (only sum and differences)
 - Mapping requires twiddle factors (large number of multiplies)
- E.g. in prime-factor algorithm
 - Subproblems are DFTs with coprime lengths (costly)
 - Mapping trivial (no arithmetic operations)

6.973 Communication System Design

FFTs with twiddle factors

Reintroduced by Cooley-Tukey '65

$$X_k = \sum_{i=0}^{N-1} x_i W_N^{ik}, \quad k = 0, ..., N-1, \quad W_N = e^{-j2\pi/N}$$

$$X(z) = \sum_{i=0}^{N-1} x_i z^{-i}, \quad z = W_N^{-k};$$

$$X(z) = \sum_{i=0}^{N-1} x_i z^{-i} = \sum_{i=0}^{r-1} \sum_{i \in I_i} x_i z^{-i},$$

$$X(z) = \sum_{i=0}^{r-1} z^{-i_{0i}} \sum x_i z^{-i+i_{0i}}$$

 $i \in I_l$

$$I_{n_1} = \{n_2 N_1 + n_1\},\$$

l = 0

$$n_1 = 0, \ldots, N_1 - 1, \quad n_2 = 0, \ldots, N_2 - 1,$$

$$X(z) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x_{n_2N_1+n_1} z^{-(n_2N_1+n_1)}$$

$$X(z) = \sum_{n_1=0}^{N_1-1} z^{-n_1} \sum_{n_2=0}^{N_2-1} x_{n_2N_1+n_1} z^{-n_2N_1},$$

$$X_{k} = X(z)|_{z=W_{N}^{-k}}$$

= $\sum_{n_{1}=0}^{N_{1}-1} W_{N}^{n_{1}k} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2}N_{1}+n_{1}} W_{N}^{n_{2}N_{1}k}$

Start from general divide and conquer

Keep periodicity compatible with periodicity of the input sequence

Use decimation

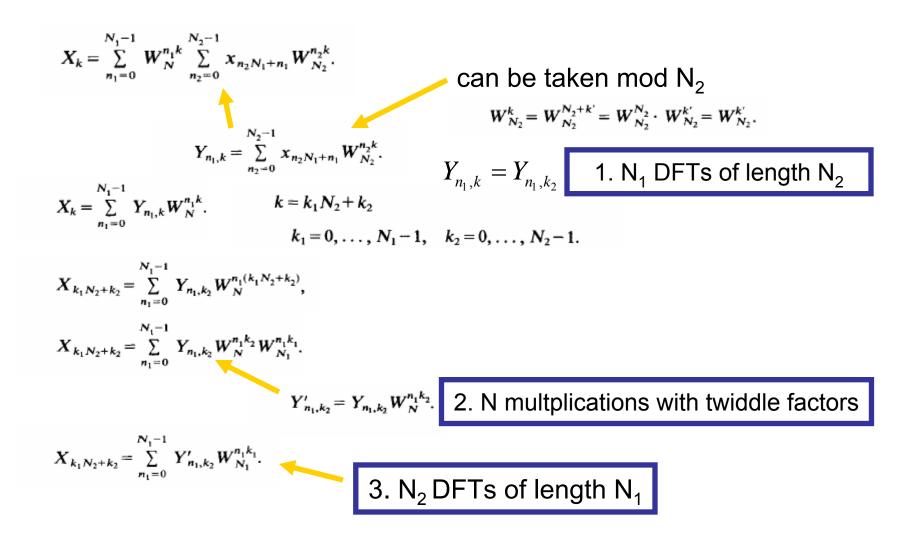
$$N = N_1 \cdot N_2$$
, $\{x_i \mid i = 0, ..., N-1\}$ $\{x_i \mid i \in I_i\}$

$$W_{N}^{iN_{1}} = e^{-j2\pi N_{1}i/N} = e^{-j2\pi i/N_{2}} = W_{N_{2}}^{i}$$
$$X_{k} = \sum_{n_{1}=0}^{N_{1}-1} W_{N}^{n_{1}k} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{2}N_{1}+n_{1}} W_{N_{2}}^{n_{2}k}.$$
almost N₁ DFTs of size N₂

6.973 Communication System Design

7

Cooley-Tukey FFT contd.



6.973 Communication System Design

- Step 1: Evaluate N₁ DFTs of length N₂
- Step 2: N multiplications with twiddle factors
- Step 3: Evaluate N₂ DFTs of length N₁
- Vector x_i mapped to matrix $x_{n1,n2}$ ($N_1 x N_2$)
- Compute N₁ DFTs of length N₂ on each row
- Point-to-point multiply with twiddle factors
- Compute N2 DFTs of length N1 on the columns

2-D view of Cooley-Tukey mapping

■ N=15 (N₁=3, N₂=5)

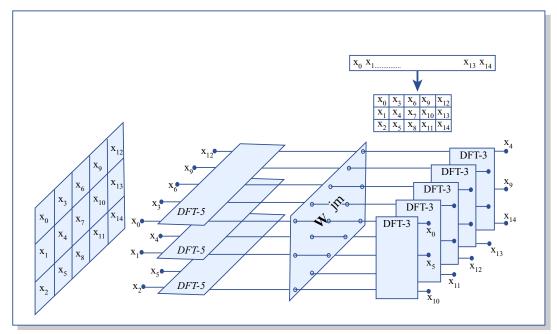


Figure by MIT OpenCourseWare.

Cannot exchange the order of DFTs

- Because of twiddle multiply
- Different mapping for N1=5, N2=3
 - Not just transpose

6.973 Communication System Design

x ₀	x ₅	x ₁₀
x ₁	x ₆	x ₁₁
x ₂	X ₇	x ₁₂
x ₃	x ₈	x ₁₃
x ₄	x ₉	x ₁₄

Figure by MIT OpenCourseWare.

10

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

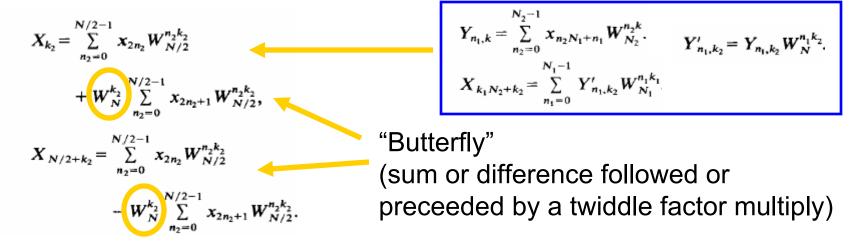
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Radix 2 and radix 4 algorithms

Lengths as powers of 2 or 4 are most popular
 Assume N=2ⁿ

 N₁=2, N₂=2ⁿ⁻¹ (divides input sequence into even and odd samples – decimation in time – DIT)



 X_m and X_{N/2+m} outputs of N/2 2-pt DFTs on outputs of 2, N/2-pt DFTs weighted with twiddle factors

6.973 Communication System Design

11

DIT radix-2 implementations

Several different ways

- Reorder the input data
 - Input samples for inner DFTs in subsequent locations
 - Results in bit-reversed input, in-order output DIT
- Selectively compute DFTs on evens and odds
 - Perform in-place computation
 - Output in bit-reversed order (X3 in position six (011->110))

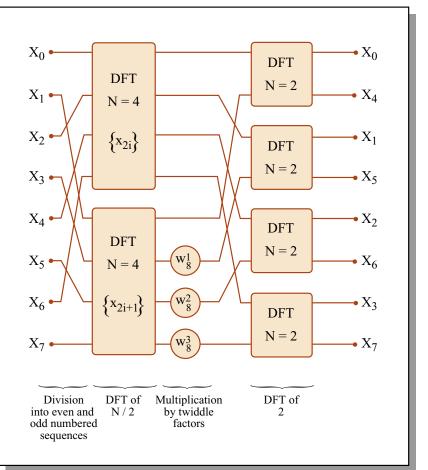


Figure by MIT OpenCourseWare.

Which type is this implementation?

6.973 Communication System Design

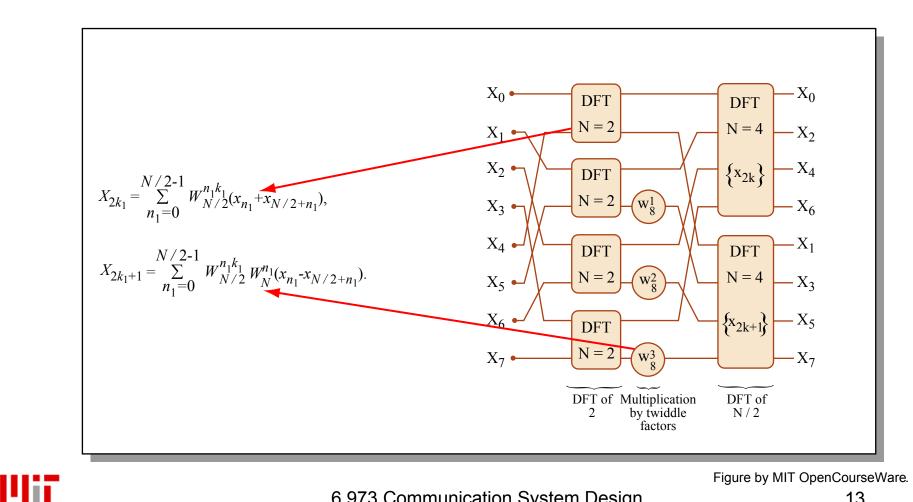
Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

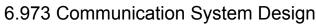
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Decimation in frequency (DIF) radix-2 implementation

• If reverse the role of N_1 and N_2 , get DIF • $N_1 = N/2, N_2 = 2$





13

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Duality DIT<->DIF

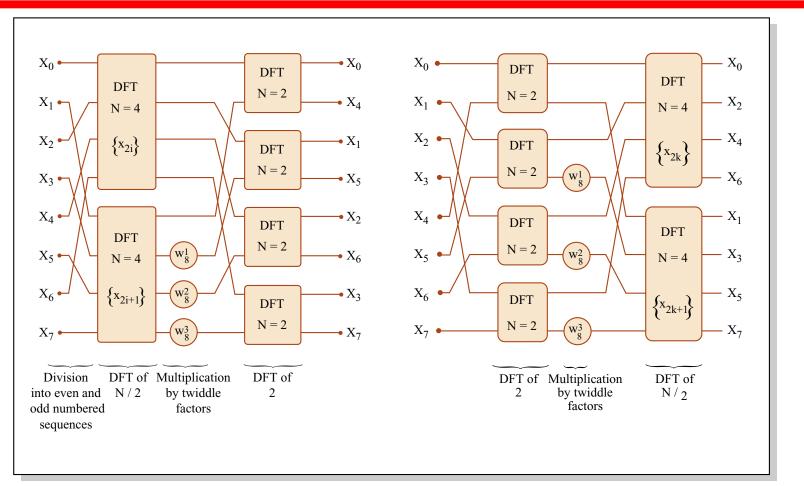


Figure by MIT OpenCourseWare.

Which one is DIT (DIF)? How can we get one from another?

Шiř

6.973 Communication System Design

14

Complexity of radix-2 FFTs

DFT of length N replaced by two length-N/2

- At the cost of N complex multiplications (twiddle)
 - And N complex additions (2pt DFTs)
- Iterate the scheme log₂N-1 times
 - Obtain trivial transforms (length 2) of the length-N/2 DFTs

 $O_{M}[DFT_{radix-2}] \approx N/2(\log_2 N - 1)$

 $O_A[DFT_{radix-2}] \approx N(\log_2 N - 1)$

- Twiddle multiplies (W_Nⁱ)
 - Complex multiply 3 real mult + 3 real add
 - If i is multiple of N/4, no arithmetic operation required (why?)

```
M[DFT_{radix-2}] = 3N/2 \log_2 N - 5N + 8,
```

4 butterflies (one general, 3 special cases)

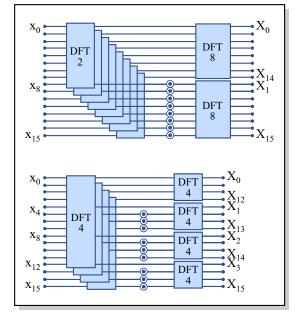
 $A[DFT_{radix-2}] = 7N/2 \log_2 N - 5N + 8.$

6.973 Communication System Design

15

Radix-4

- □ N=4ⁿ, N₁=4, N₂=N/4
 - 4 DFTs of length N/4
 - 3N/4 twiddle multiplies
 - N/4 DFTs of length 4
- Cost of length-4 DFT
 - No multiplication
 - Only 16 real additions



- $\hfill\square$ Reduces the number of stages to log_4N $_{\rm Figure by MIT OpenCourseWare.}$
 - $O_{M}[DFT_{radix-4}] \approx 3N/4(\log_4 N 1).$

 $M[DFT_{radix-4}]$

 $=9N/8\log_2 N - 43N/12 + 16/3,$

 $A[DFT_{radix-4}]$

 $= 25N/8\log_2 N - 43N/12 + 16/3.$

 $O_{M}[DFT_{radix-2}] \approx N/2(\log_2 N - 1)$

 $M[DFT_{radix-2}] = 3N/2 \log_2 N - 5N + 8,$

 $A[DFT_{radix-2}] = 7N/2\log_2 N - 5N + 8.$

Radix-8 can reduce number of operations even more

6.973 Communication System Design

16

Mixed-radix and Split-radix

Mixed-radix

- Diferent radices in different stages
- Split-radix
 - Different radices in the same stage
 - Simultaneously on different parts of the transform
 - Can achieve lowest number of adds and multiplies for length 2ⁿ inputs

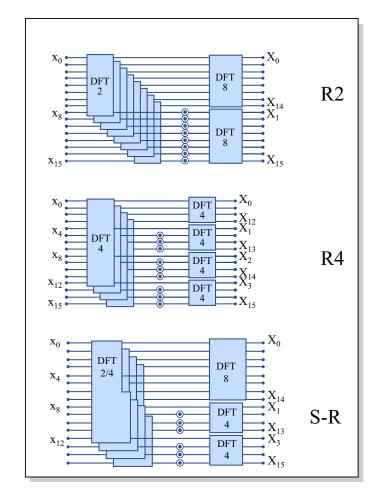
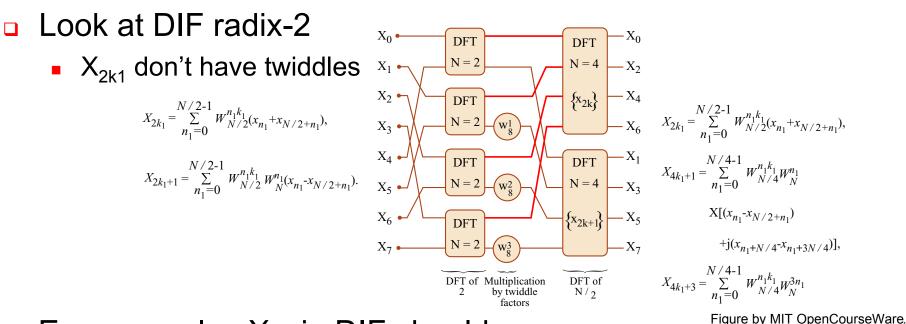


Figure by MIT OpenCourseWare.

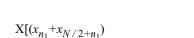
6.973 Communication System Design

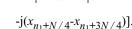
17

Split-radix (DIF SRFFT)



- Even samples X_{2k} in DIF should be computed separately from other samples
 - With same algorithm (recursively) as the original sequence
- No general rule for odd samples
 - Radix-4 is more efficient than radix-2
 - Higher radices are inefficient





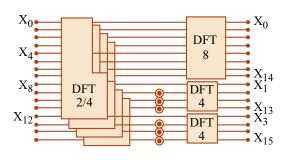


Figure by MIT OpenCourseWare.

Split-radix (DIT SRFFT)

Dual to DIF SRFFT

• Considers separately subsets $\{x_{2i}\}$, $\{x_{4i+1}\}$ and $\{x_{4i+3}\}$

 $I_0 = \{2i\}, I_1 = \{4i+1\}, I_2 = \{4i+3\}$

$$X(z) = \sum_{l=0}^{r-1} z^{-i_{0l}} \sum_{i \in I_l} x_i z^{-i+i_{0l}}$$

$$X_{k} = \sum_{I_{0}} x_{2i} W_{N}^{k(2i)} + W_{N}^{k} \sum_{I_{1}} x_{4i+1} W_{N}^{k(4i+1)-k} + W_{N}^{3k} \sum_{I_{1}} x_{4i+3} W_{N}^{k(4i+3)-3k},$$

 $A[DFT_{split-radix}] = 3N \log_2 N - 3N + 4.$

• Redundancy in
$$X_k$$
, $X_{k+N/4}$, $X_{k+N/2}$, $X_{k+3N/4}$ computation

$$X_{k} = \sum_{i=0}^{N/2-1} x_{2i} W_{N/2}^{ik} + W_{N}^{k} \sum_{i=0}^{N/4-1} x_{4i+1} W_{N/4}^{ik} + W_{N}^{3k} \sum_{i=0}^{N/4-1} x_{4i+3} W_{N/4}^{ik}, \qquad X_{k+N/2} = \sum_{i=0}^{N/2-1} x_{2i} W_{N/2}^{ik} - W_{N}^{k} \sum_{i=0}^{N/4-1} x_{4i+1} W_{N/4}^{ik} - W_{N}^{k} \sum_{i=0}^{N/4-1} x_{4i+1} W_{N/4}^{ik}, \qquad -W_{N}^{3k} \sum_{i=0}^{N/4-1} x_{4i+1} W_{N/4}^{ik}, \qquad -W_{N}^{3k} \sum_{i=0}^{N/4-1} x_{4i+1} W_{N/4}^{ik}, \qquad -W_{N}^{3k} \sum_{i=0}^{N/4-1} x_{4i+3} W_{N/4}^{ik}, \qquad -W_{N}^{3k} \sum_{i=0}^{N/4-1} x_{4i+3} W_{N/4}^{ik}, \qquad -J W_{N}^{3k} \sum_{i=0}^{N/4-1} x_{4i+3} W_{N/4}^{ik}, \qquad -J W_{N}^{k} \sum_{i=0}^{N/4-1} x_{4i+1} W_{N/4}^{ik}, \qquad -J W_{N}^{k} \sum_{i=0}^{N/4-1} x_{i+1} W_{N/4}^{ik}, \qquad -J W_{N}^{k} \sum_{i=0}^{$$

6.973 Communication System Design

 $+jW_N^{3k}\sum_{i=0}^{N/4-1}x_{4i+3}W_{N/4}^{ik}.$ 19

FFTs without twiddle factors

- Divide and conquer requirements
 - N-long DFT computed from DFTs with lengths that are factors of N (allows the inner sum to be a DFT)
 - Provided that subsets I₁ guarantee periodic x_i

$$X(z) = \sum_{n_1=0}^{N_1-1} z^{-n_1} \sum_{n_2=0}^{N_2-1} x_{n_2N_1+n_1} z^{-n_2N_1},$$

$$X(z) = \sum_{i=0}^{N-1} x_i z^{-i} = \sum_{i=0}^{r-1} \sum_{i \in I_i} x_i z^{-i},$$

$$X(z) = \sum_{i=0}^{N-1} x_i z^{-i} = \sum_{i=0}^{r-1} \sum_{i \in I_i} x_i z^{-i},$$

$$X(z) = \sum_{i=0}^{r-1} z^{-i_{0i}} \sum_{i \in I_i} x_i z^{-i+i_{0i}}.$$

When N factors into co-prime factors N=N₁*N₂

Starting from any x_i form subset with compatible periodicity (the periodicity of the subset divides the periodicity of the set)

$$\{x_{i+N_1n_2} \mid n_2 = 1, ..., N_2 - 1\}$$
 or $\{x_{i+N_2n_1} \mid n_1 = 1, ..., N_1 - 1\}$

- Both subsets have only one common point x_i
- Allows a rearrangement of the input (periodic) vector into a matrix with a periodicity in both dimensions (rows and columns), both periodicities being comatible with the initial one

6.973 Communication System Design

20

Good's mapping

- FFTs without twiddle factors all based on the same mapping
 - Turns original transform into a set of small DFTs with coprime lengths

$$\{x_{i+N_1n_2} \mid n_2 = 1, ..., N_2 - 1\}$$
 or $\{x_{i+N_2n_1} \mid n_1 = 1, ..., N_1 - 1\}$

equivalent to

$$i = \langle n_1 \cdot N_2 + n_2 \cdot N_1 \rangle_N,$$

$$n_1 = 1, \ldots, N_1 - 1, \quad n_2 = 1, \ldots, N_2 - 1$$

 $N=N_1N_2,$

0 1 2 3 4	5	6	7	8	9	10	11	12	13	14]
↓											
Good's mapping	0	3	6	9	12]					
	5	8	11	14	2						
	10	13	1	4	7						

Figure by MIT OpenCourseWare.

- This mapping is one-to-one if N1 and N2 are coprime
- All congruences modulo N1 obtained
 - For a given congruence modulo N2 and vice versa

6.973 Communication System Design

21

Just another arrangement of CRT

- Chinese Remainder Theorem (CRT)
 - If we know the residue of some number k modulo two coprime numbers N_1 and $N_2 \quad \langle k \rangle_{N_1} \quad \langle k \rangle_{N_2}$
 - It is possible to reconstruct $\langle k \rangle_{N_1N_2}$

• Let
$$\langle k \rangle_{N_1} = k_1 \langle k \rangle_{N_2} = k_2$$

• Then $\langle k \rangle_{N_1N_2} = \langle N_1t_1k_2 + N_2t_2k_1 \rangle_N$

$$\langle t_1 N_1 \rangle_{N_2} = 1 \text{ and } \langle t_2 N_2 \rangle_{N_1} = 1$$

 $\begin{array}{l} t_1 \text{ multiplicative inverse of } N_1 \text{ mod } N_2 \\ t_2 \text{ multiplicative inverse of } N_2 \text{ mod } N_1 \\ t_1, t_2 \text{ always exist since } N_1, N_2 \text{ coprime } (N_1, N_2) = 1 \end{array}$

What are t_1 , t_2 for N_1 =3, N_2 =5?

- Reversing N₁ and N₂
 - Results in transposed mapping

6.973

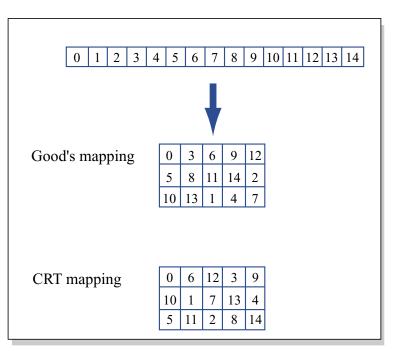


Figure by MIT OpenCourseWare.

22

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Impact on DFT

Formulating the true multi-dimensional transform

$$\left\langle k\right\rangle_{N_1N_2} = \left\langle N_1t_1k_2 + N_2t_2k_1\right\rangle_N$$

$$X_{k} = \sum_{i=0}^{N-1} x_{i} W_{N}^{ik} k = 0, ..., N-1,$$

$$X_{N_{1}t_{1}k_{2}} + N_{2}r_{2}k_{1} = \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{1}N_{2}} + n_{2}N_{1} W_{N}^{(n_{1}N_{2}+N_{1}n_{2})(N_{1}t_{1}k_{2}+N_{2}t_{2}k_{1})}$$

$$W_{N}^{N_{2}} = W_{N_{1}} \qquad W_{N_{1}}^{N_{2}t_{2}} = W_{N_{1}}^{(N_{2}t_{2})_{N_{1}}} = W_{N_{1}}$$
$$X_{N_{1}t_{1}k_{2} + N_{2}t_{2}k_{1}} = \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{1}N_{2} + n_{2}N_{1}} W_{N_{1}}^{n_{1}k_{2}} W_{N_{2}}^{n_{2}k_{2}} ,$$

$$X'_{k_1k_2} = X_{N_1t_1k_2 + N_2t_2k_1} \qquad x'_{n_1,n_2} = x_{n_1N_2 + n_2N_1}$$

$$X'_{k_1k_2} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x'_{n_1n_2} W_{N_1}^{n_1k_1} W_{N_2}^{n_2k_2}$$

True bidimensional transform! (no extra twiddle factors)

Figure by MIT OCW.

1417

6.973 Communication System Design

23

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

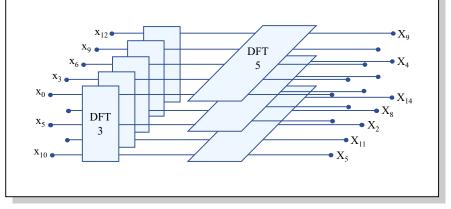


Figure by MIT OpenCourseWare.

Using convolution to compute DFTs

- All sub DFTs are prime length
 - Rader showed that prime-length DFTs can be computed as a result of cyclic convolution
 - E.g. length 5 DFT

Permute last two rows and columns

$$\begin{bmatrix} u_{1} \\ v_{2} \\ v_{4} \\ v_{5} \end{bmatrix} = \begin{bmatrix} W_{5}^{1} & W_{5}^{2} & W_{5}^{4} & W_{5}^{3} \\ W_{5}^{2} & W_{5}^{4} & W_{5}^{3} & W_{5}^{1} \\ W_{5}^{4} & W_{5}^{3} & W_{5}^{1} & W_{5}^{2} \\ W_{5}^{3} & W_{5}^{1} & W_{5}^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{4} \\ x_{5} \end{bmatrix}$$

 $\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W_5^1 & W_5^2 & W_5^3 & W_5^4 \\ 1 & W_5^2 & W_5^4 & W_5^1 & W_5^3 \\ 1 & W_5^3 & W_5^1 & W_5^4 & W_5^2 \\ X_4 \end{bmatrix} \begin{bmatrix} 1 & W_5^3 & W_5^1 & W_5^4 & W_5^2 \\ 1 & W_5^4 & W_5^3 & W_5^2 & W_5^1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$

Cyclic correlation

(a convolution with a reversed sequence)

This is a general result

6.973 Communication System Design

Example

Results in smallest number of multiplies

 $(X'_0, X'_1, \ldots, X'_4)^{\mathsf{T}}$ $= C \cdot D \cdot B \cdot (x_0, x_1, \ldots, x_4)^{\mathrm{T}}.$ $C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 & 0 & -1 \\ 1 & 1 & 1 & -1 & 1 & 0 \end{bmatrix}$ $D = \text{diag}[1, ((\cos u + \cos 2u)/2 - 1)],$ $(\cos u - \cos 2u)/2$, $-i \sin u$, $-j(\sin u + \sin 2u)$, $j(\sin u - \sin 2u)],$ $B = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & -1 & 1 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ \end{vmatrix}.$

6.973 Communication System Design

Prime Factor Algorithm

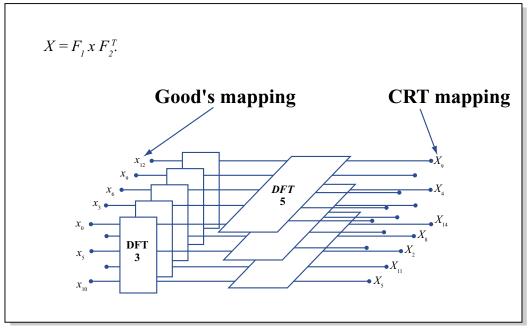


Figure by MIT OpenCourseWare.

Efficient small DFTs are a key to the feasibility of this algorithm

$$M_{N_1N_2} = N_1M_2 + N_2M_1, \qquad m_{N_1N_2N_3N_4} = m_{N_1} + m_{N_2} + m_{N_3} + m_{N_4}, A_{N_1N_2} = N_1A_2 + N_2A_1, \qquad a_{N_1N_2N_3N_4} = a_{N_1} + a_{N_2} + a_{N_3} + a_{N_4}.$$

 M_{N}

6.973 Communication System Design

Winograd's Fourier Transform Algorithm

 $\boldsymbol{X} = \boldsymbol{F}_1 \boldsymbol{x} \boldsymbol{F}_2^{\mathrm{T}}.$

 $\boldsymbol{X} = \boldsymbol{C}_1 \boldsymbol{D}_1 \boldsymbol{B}_1 \boldsymbol{x} \boldsymbol{B}_2^{\mathsf{T}} \boldsymbol{D}_2 \boldsymbol{C}_2^{\mathsf{T}}.$

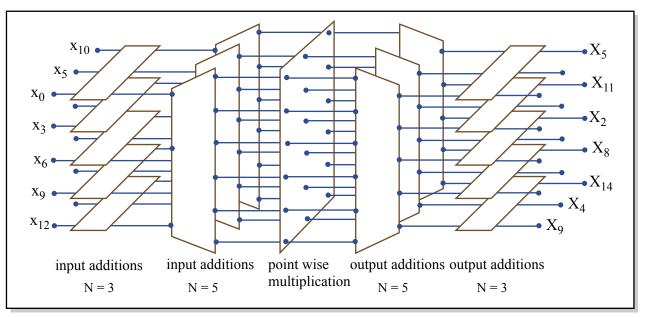


Figure by MIT OpenCourseWare.

- **B** $_1xB_2$, only involves additions
- D diagonal (so point multiply)
- Winograd transform has many more additions than twiddle FFTs

6.973 Communication System Design

27