
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2012

Quiz I Solutions

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

Grade for q1

Histogram of grade distribution

1

I Buffer overflows

Consider the following C program, where an adversary can supply arbitrary input on stdin. Assume no
compiler optimizations, and assume a 32-bit system. In this example, fgets() never writes past the end of
the 256-byte buf, and always makes it NULL-terminated.

int main() {
char buf[256];
fgets(buf, 256, stdin);
foo(buf);
printf("Hello world.\n");

}

1. [12 points]: Suppose the foo function is as follows:

void foo(char *buf) {

char tmp[200]; // assume compiler places "tmp" on the stack

// copy from buf to tmp

int i = 0; // assume compiler places "i" in a register

while (buf[i] != 0) {

tmp[i] = buf[i];

i++;

}

}

Which of the following are true? Assume there is an unmapped page both above and below the stack in
the process’s virtual memory.

(Circle True or False for each choice.)

A. True / False An adversary can trick the program to delete files on a system where the stack grows
down.

Answer: True. The adversary can overwrite foo’s return address.

B. True / False An adversary can trick the program to delete files on a system where the stack grows
up.

Answer: False. If the stack grows up, then no other state is placed above tmp on the stack, so even if

the adversary overflows tmp, it will not affect the program’s execution.

C. True / False An adversary can trick the program to delete files on a system using Baggy bounds
checking with slot_size=16. (Stack grows down.)

Answer: False. Baggy will prevent memory writes to tmp from overflowing to the return address or

any other stack variable.

2

D.	 True / False An adversary can prevent the program from printing “Hello world” on a system using
Baggy bounds checking with slot_size=16. (Stack grows down.)

Answer: False. The argument buf points to a string that is at most 255 bytes long, since fgets

NULL-terminates the buffer. Baggy enforces a power-of-2 allocation bound for tmp, which ends up

being 256 bytes.

E. True / False An adversary can trick the program to delete files on a system using terminator stack
canaries for return addresses. (Stack grows down.)

Answer: False. A terminator stack canary includes a NULL byte, and if the adversary overwrites

the return address on the stack, the canary value will necessarily not contain any NULL bytes (since

otherwise the while loop would have exited).

F.	 True / False An adversary can prevent the program from printing “Hello world” on a system using
terminator stack canaries for return addresses. (Stack grows down.)

Answer: True. The adversary could simply overwrite the canary value, which will terminate the
program as foo returns.

3

2. [8 points]: Suppose the foo function is as follows:

struct request {

void (*f)(void); // function pointer

char path[240];

};

void foo(char *buf) {

struct request r;

r.f = /* some legitimate function */;

strcpy(r.path, buf);

r.f();

}

Which of the following are true?
(Circle True or False for each choice.)

A. True / False An adversary can trick the program to delete files on a system where the stack grows
down.

Answer: True. The adversary can overwrite foo’s return address on the stack.

B. True / False	 An adversary can trick the program to delete files on a system where the stack grows
up.

Answer: True. The adversary can overwrite strcpy’s return address on the stack.

C. True / False	 An adversary can trick the program to delete files on a system using Baggy bounds
checking with slot_size=16. Assume strcpy is compiled with Baggy. (Stack grows down.)

Answer: False. Baggy bounds checking will prevent strcpy from going past r’s allocation bounds,
and r.f is before r.path in r’s memory layout.

D.	 True / False An adversary can prevent the program from printing “Hello world” on a system using
Baggy bounds checking with slot_size=16. Assume strcpy is compiled with Baggy. (Stack grows
down.)

Answer: True. If the adversary supplies 255 bytes of input, then strcpy will write past r’s allocation
bounds of 256 bytes, and Baggy will terminate the program.

4

II OS sandboxing

Ben Bitdiddle is modifying OKWS to use Capsicum. To start each service, Ben’s okld forks, opens the
service executable binary, then calls cap_enter() to enter capability mode in that process, and finally
executes the service binary. Each service gets file descriptors only for sockets connected to okd, and for TCP
connections to the relevant database proxies.

3. [6 points]: Which of the following changes are safe now that the services are running under
Capsicum, assuming the kernel implements Capsicum perfectly and has no other bugs?

(Circle True or False for each choice.)

A. True / False	 It is safe to run all services with the same UID/GID.

Answer: True.

B. True / False	 It is safe to run services without chroot.

Answer: True.

C. True / False It is safe to also give each service an open file descriptor for a per-service directory
/cores/servicename.

Answer: True.

5

Ben also considers replacing the oklogd component with a single log file, and giving each service a file
descriptor to write to the log file.

4. [5 points]: What should okld do to ensure one service cannot read or overwrite log entries from
another service? Be as specific as possible.

Answer: okld should call:

lc_limitfd(logfd, CAP_WRITE);

To ensure that the service cannot seek, truncate, or read the log file.

5. [5 points]: What advantages could an oklogd-based design have over giving each service a file

descriptor to the log file?

Answer: oklogd can enforce structure on the log file, such as adding a timestamp to each record,

ensuring each record is separated from other records by a newline, ensuring multiple records are not

interleaved, etc.

6

III Network protocols

Ben Bitdiddle is designing a file server that clients connect to over the network, and is considering using
either Kerberos (as described in the paper) or SSL/TLS (without client certificates, where users authenticate
using passwords) for protecting a client’s network connection to the file server. For this question, assume
users choose hard-to-guess passwords.

6. [6 points]: Would Ben’s system remain secure if an adversary learns the server’s private key, but
that adversary controls only a single machine (on the adversary’s own home network), and does not
collude with anyone else? Discuss both for Kerberos and for SSL/TLS.

Answer: With Kerberos, no: the adversary can impersonate any user to this server, by constructing
any ticket using the server’s private key.

With SSL, yes: the server can impersonate the server to another client, but no clients will connect to

the adversary’s fake server.

7. [6 points]: Suppose an adversary learns the server’s private key as above, and the adversary
also controls some network routers. Ben learns of this before the adversary has a chance to take any
action. How can Ben prevent the adversary from mounting attacks that take advantage of the server’s
private key (e.g., not a denial-of-service attack), and when will the system be secure? Discuss both for
Kerberos and for SSL/TLS.

Answer: With Kerberos, Ben should change the server’s private key. The system will be secure from
that point forward. If the adversary was recording network traffic from before the attack, Ben should
also make sure he changes the server’s private key over a secure network link, because kpasswd does
not provide forward secrecy. The adversary may be able to decrypt network traffic to the file server
before the key is changed.

With SSL, Ben should obtain a new SSL certificate for the server, with a new secret key, but the
adversary can continue to impersonate Ben’s file server until the compromised certificate expires. The
system will only be secure once the certificate expires, or once all clients learn of the certificate being
revoked.

7

IV Static analysis

Would Yichen Xie’s PHP static analysis tool for SQL injection bugs, as described in the paper, flag a potential
error/warning in the following short but complete PHP applications?

8. [10 points]:

A. True / False The tool would report a potential error/warning in the following code:

function q($s) {

return mysql_query($s);

}

$x = $_GET[’id’];

q("SELECT .. $x");

Answer: True. The summary for q() indicates that the argument must be sanitized on entry, and the
main function does not sanitize the argument.

B. True / False The tool would report a potential error/warning in the following code:

function my_validate() {

return isnumeric($_GET[’id’]);

}

$x = $_GET[’id’];

if (my_validate()) {

mysql_query("SELECT .. $x");

}

Answer: False. The summary for my_validate() indicates that $_GET[id] is sanitized if the return
value is true.

8

9. [10 points]:

A. True / False The tool would report a potential error/warning in the following code:

mysql_query("SELECT .. $n");

Answer: True. The tool reports warnings when any variable must be sanitized on entry into the main
function, and the variable is not known to be easily controlled by the user, such as $_GET and $_POST.

B. True / False The tool would report a potential error/warning in the following code:

function check_arg($n) {

$v = $_GET[$n];

return isnumeric($v);

}

$x = $_GET[’id’];

if (check_arg(’id’)) {

mysql_query("SELECT .. $x");

}

Answer: True. The summary for check_arg() indicates that $_GET[⊥] is sanitized if the return
value is true, but the call to mysql_query() requires $_GET[id] to be sanitized.

9

V Runtime instrumentation

10. [10 points]:

Consider the following Javascript code:

function foo(x, y) {
return x + y;

}

var a = 2;
eval("foo(a, a)");

var p_c = {
k: 5,
f: function() { return a + this.k; }

};
var kk = ’k’;
p_c[kk] = 6;
p_c.f();

Based on the description in the paper by Sergio Maffeis et al, and based on lecture 9, what will be the
FBJS rewritten version of this code, assuming the application-specific prefix is p_?

Answer: FBJS adds a p_ prefix to every variable name, and wraps this and variable array indexes in
$FBJS.ref() and $FBJS.idx() respectively.

function p_foo(p_x, p_y) {
return p_x + p_y;

}

var p_a = 2;
p_eval("foo(a, a)");

var p_p_c = {
k: 5,
f: function() { return p_a + $FBJS.ref(this).k; }

};
var p_kk = ’k’;
p_p_c[$FBJS.idx(p_kk)] = 6;
p_p_c.f();

10

VI Browser security

Ben Bitdiddle is taking 6.858. Once he’s done with his lab at 4:55pm, he rushes to submit it by going to
https://taesoo.scripts.mit.edu/submit/handin.py/student, selecting his labN-handin.tar.gz
file, and clicking “Submit”. The 6.858 submission web site also allows a student to download a copy of their
past submission.

For your reference, when the user logs in, the submission web site stores a cookie in the user’s browser to
keep track of their user name. To prevent a user from constructing their own cookie, or arbitrarily changing
the value of an existing cookie, the server includes a signature/MAC of the cookie’s value in the cookie, and
checks the signature when a new request comes in. Finally, users can log out by clicking on the “Logout”
link, https://taesoo.scripts.mit.edu/submit/handin.py/logout, which clears the cookie.

Alyssa P. Hacker, an enterprising 6.858 student, doesn’t want to do lab 5, and wants to get a copy of Ben’s
upcoming lab 5 submission instead. Alyssa has her own web site at https://alyssa.scripts.mit.edu/,
and can convince Ben to visit that site at any point.

11. [16 points]: How can Alyssa get a copy of Ben’s lab 5 submission?

Alyssa’s attack should rely only on the Same-Origin Policy. Assume there are no bugs in any software,
Ben’s (and Taesoo’s) password is unguessable, the cookie signature scheme is secure, etc.

Answer: Alyssa’s web site should force Ben’s browser to log out from the 6.858 submission web site,
by inserting the following tag:

and then set a cookie for domain=scripts.mit.edu containing Alyssa’s own cookie. When Ben
visits the submission web site to upload his lab 5, he will actually end up uploading it under Alyssa’s
username, allowing Alyssa to then download it at 4:56pm.

11

VII 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

12. [2 points]: This year we started using Piazza for questions and feedback. Did you find it useful,
and how could it be improved?

Answer: Generally good; UI not so great; appreciate anonymity. Would be good if answers show

up quicker. Bypass email preferences for important announcements. In-person office hours are also

important. Submit paper questions via Piazza. Signal-to-noise ratio too low. More TA/professor

participation other than David. Ask people not to be anonymous. Separate login is annoying. RSS

feed.

13. [2 points]: What aspects of the labs were most time-consuming? How can we make them less

tedious?

Answer: Include more debugging tools, especially for the PyPy sandbox. Explain where errors /

debug output goes. Explanation of provided lab code; explain what parts to focus on. Start discussions

of papers. Avoid asking for the same thing multiple times in the lab; 2nd part of lab 2 was repetitive.

Speed up the VM / run Python fewer times. More office hours. Better / more fine-grained / faster make

check. Review/recitation session to provide background knowledge for a lab.

14. [2 points]: Are there other things you’d like to see improved in the second half of the semester?

Answer: Past exploits. More time on labs. More late days. More summaries of papers / what to focus

on / background info. More attacks. More recent papers. Explicit lectures on lab mechanics. More

design freedom in labs / more challenging design choices; less fill-in-the-blank style. Some papers

are too technical. Fewer ways to turn things in (submit via make; submit via text file; email question;

Piazza). Balance first and second parts of labs. Novelty lecture on lockpicking. Shorter quiz. Weekly

review of lecture (not labs) material – recitation? Relate labs to lectures, teach more hands-on stuff.

Labs where you solve some problem rather than get the details right? Explain what corner cases matter

for labs. Lecture should focus on application of paper’s ideas and short review of paper content. More

info on final projects. Scrap the answers.txt stuff, just code.

End of Quiz

12

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

