6.856 - Randomized Algorithms

David Karger

Handout \#5, September 18, 2002 - Homework 3, Due 9/25

M. R. refers to this text:
Motwani, Rajeez, and Prabhakar Raghavan. Randomized Algorithms. Cambridge: Cambridge University Press, 1995.

1. Based on MR 4.1. Suppose that you wish to estimate the (small) fraction f of Republicans in Massachusetts. Assume that you are able to select a resident uniformly at random and determine their political affiliation. Assume also that you know some lower bound $a<f$. Devise a procedure for estimating f by some \hat{f} such that $\operatorname{Pr}[|f-\hat{f}|>\varepsilon f]<\delta$, for any choice of constants $0<a, \varepsilon, \delta<1$. Let N be the number of residents you must query to get the estimate. What is the smallest value of N for which you can give your guarantee?
2. MR 4.14. Show that the Quicksort algorithm of Chapter 1 runs in $O(n \log n)$ time with high probability. Hint: bound the number of pivots to which a given item is compared.
3. (Based on MR 3.4). This problem can be thought of as modeling some parallel system in which the solution to contention for a resource is for the contenders to back off and try again.

Consider the following experiment that proceeds in a sequence of rounds. For the first round, we have n balls, which are thrown independently and uniformly at random into n bins. After round i, for $i \geq 1$, we discard every ball that ended up in a bin by itself in round i. The remaining balls are retained for round $i+1$, in which they are again thrown independently and uniformly at random into the n bins.
(a) Suppose that in some round we have $k=\varepsilon n$ balls. How many balls should you expect to have in the next round?
(b) Assuming that everything proceeded according to expectation, prove that we would discard all the balls within $O(\log \log n)$ rounds.
(c) Convert the previous part into a true proof that with probability $1-o(1)$, we discard all balls within $O(\log \log n)$ rounds. Hint: call a round good if the number of balls retained is not much more than expected. What is the probability that a round is good? Show that with probability $1-o(1)$, we get enough good rounds among the first $O(\log \log n)$ to finish.
4. (Optional) MR 4.7. Prove that Chernoff bounds hold for arbitrary random variables in the $[0,1]$ interval:
(a) A function f is said to be convex if for any x, y, and $0 \leq \lambda \leq 1, f(\lambda x+(1-\lambda) y) \leq$ $\lambda f(x)+(1-\lambda) f(y)$. Show that $f(x)=e^{t x}$ is convex for any $t>0$ (you can use the fact that $e^{t x}$ has positive second derivative everywhere). What if $t \leq 0$?
(b) Let Z be a random variable that takes values in the interval $[0,1]$ and let $p=E[Z]$. Define the Bernoulli random variable X such that $\operatorname{Pr}[X=1]=p$. Show that for any convex $f, E[f(Z)] \leq E[f(X)]$.
(c) Let Y_{1}, \ldots, Y_{n} be independent identical distributed random variables over $[0,1]$ and define $Y=\sum Y_{i}$. Derive Chernoff-type upper and lower tail bounds for the random variable Y. In particular, show that for $\delta \leq 1$,

$$
\operatorname{Pr}[Y-E[Y]>\delta] \leq \exp \left(-\delta^{2} / 2 n\right)
$$

5. (Optional) (variant of MR 4.22). Chernoff bounds with dependent variables: Chernoff bounds are quite powerful, but are limited to sums of independent random variables. In the next problem, we will consider ways to apply them to sums of dependent random variables by comparing the dependent distributions to independent ones.

Consider the model of n balls tossed randomly in n bins. We derive tight bounds on the number of empty bins. Let X_{i} be the indicator variable that is 1 if the i-th bin is empty. Let $Z=\sum I_{i}$ be the number of empty bins. Define $p=E\left[X_{i}\right]=(1-1 / n)^{n}$ and let X_{i}^{\prime} be n mutually independent Bernoulli random variables that are 1 with probability p. Note that $Y=\sum X_{i}^{\prime}$ has the binomial distribution with parameters n and p.

- Show that for all $t \geq 0, E\left[e^{t Z}\right] \leq E\left[e^{t Y}\right]$ (hint: think about comparing $E\left[Y^{k}\right]$ and $E\left[Z^{k}\right]$ by expanding them). Conclude that any Chernoff bound on the upper tail of Y 's distribution also applies to the upper tail of Z 's distribution, even though the Bernoulli variables X_{i} are not independent. (The point is that their correlation is negative and only helps to reduce the tail probability.) Give a resulting bound on the upper tail of Z.
- (This one is very hard) Perform the same sort of analysis for the lower tail.

