6.856 - Randomized Algorithms

David Karger

Handout \#10, 2002 - Homework 4 Solutions
M. R. refers to this text:

Motwani, Rajeez, and Prabhakar Raghavan. Randomized Algorithms. Cambridge: Cambridge University Press, 1995.

Problem 1

(a) MR Exercise 4.2. Each node $a_{i} b_{i}$ sends a packet to node $b_{i} a_{i}$ through node $b_{i} b_{i}$. There are $2^{n / 2}=2^{\frac{\log N}{2}}$ packets that have to be routed through a given node $x x$. Half of these packets have to flip the $\left(\frac{n}{2}+1\right)$-st bit. All these messages have to cross the one edge that connects $x x$ to the node with a different $\left(\frac{n}{2}+1\right)$-st bit. Therefore, at least $\frac{\sqrt{N}}{2}=\Omega(\sqrt{N})=\Omega\left(\sqrt{\frac{N}{n}}\right)$ steps are needed.
(b) MR 4.9. Consider the transpose permutation again, and again restrict attention to packets with $b_{i}=0^{n / 2}$. We show that with high probability, $2^{\Omega(n)}$ packets go through vertex 0^{n}, which means we take time at least $2^{\Omega(n)} / n=2^{\Omega(n)}$. For the proof, fix attention on $\binom{n / 2}{k}$ packets whose a_{i} have exactly k ones (we'll fix k later). Note that the bit fixing algorithm must change these k ones to zeroes, and must change a corresponding k zeroes to ones. We go through vertex 0^{n} if all k ones in a_{i} are corrected to zeroes before any of the zeroes in b_{i} are corrected to ones. Since the corrections are in random order, meaning that the first k bits to be fixed are a random subset of the $2 k$ that must be fixed, the probability that this happens is

$$
\binom{2 k}{k}^{-1}
$$

It follows that the expected number of packets hitting 0^{n} is

$$
\begin{aligned}
\frac{\binom{n / 2}{k}}{\binom{2 k}{k}} & \geq \frac{\left(\frac{n}{2 k}\right)^{k}}{\left(\frac{2 e k}{k}\right)^{k}} \\
& =\left(\frac{n}{4 e k}\right)^{k}
\end{aligned}
$$

Now suppose we take $k=n / 8 e$. Then we get an expected packet number of $2^{n / 8 e}=2^{\Omega(n)}$.
Since each packet is deciding independently whether to go through 0^{n}, we can apply the Chernoff bound to deduce that at least $\frac{1}{2} \cdot 2^{n / 8 e}$ packets go through 0^{n} with high probability.

Problem 2

1. As mentioned in the problem statement, every X_{i} has a distribution equal to the length of a sequence of coin flips until we see the first heads. Therefore $\sum X_{i}$ has the same distribution as the length of a sequence of coin flips until we see the n-th head.
Imagine having an infinite sequence of coin flips, then $\sum X_{i}$ gives the position of the n-th head. The event $X>(1+\delta) 2 n$ is therefore the same as saying that the n-th head does not occur among the first $(1+\delta) 2 n$ coin flips. Let Y be the random variable giving the number of heads among the first $(1+\delta) 2 n$ coin flips. Then we have

$$
\operatorname{Pr}[X>(1+\delta) 2 n]=\operatorname{Pr}[Y<n]
$$

Since Y is the sum of independent Poisson trials, we can apply a Chernoff bound on Y to bound the above probability. Noting that $\mu_{Y}=(1+\delta) n$, we have

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\delta) 2 n] & =\operatorname{Pr}[Y<n]=\operatorname{Pr}\left[Y<\left(1-\frac{\delta}{1+\delta}\right)(1+\delta) n\right] \\
& \leq \exp \left(-(1+\delta) n \cdot \frac{\delta^{2}}{2(1+\delta)^{2}}\right) \\
& =\exp \left(-\frac{n \delta^{2}}{2(1+\delta)}\right)
\end{aligned}
$$

2. (optional) Instead of considering $E[X]$ directly, we consider $E[\exp (t X)]=E\left[\exp \left(t \sum X_{i}\right)\right]$ $=E\left[\Pi \exp \left(t X_{i}\right)\right]=\Pi E\left[\exp \left(t X_{i}\right)\right]$, where we fix t later. By applying a Markov bound, we obtain

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\delta) 2 n] & =\operatorname{Pr}[\exp (t X)>\exp (t(1+\delta) 2 n)] \\
& \leq \frac{E[\exp (t X)]}{\exp (t(1+\delta) 2 n)} \\
& =\frac{\Pi E\left[\exp \left(t X_{i}\right)\right]}{\exp (t(1+\delta) 2 n)} \quad(*)
\end{aligned}
$$

Now we have (assuming $e^{t}<2$):

$$
E\left[\exp \left(t X_{i}\right)\right]=\frac{1}{2} e^{t}+\frac{1}{4} e^{2 t}+\frac{1}{8} e^{3 t}+\cdots=\sum_{k=1}^{\infty}\left(\frac{e^{t}}{2}\right)^{k}=\frac{e^{t} / 2}{1-e^{t} / 2}=\frac{e^{t}}{2-e^{t}}
$$

Substitution in (*) yields:

$$
\operatorname{Pr}[X>(1+\delta) 2 n] \leq \frac{e^{t n}}{\left(2-e^{t}\right)^{n} e^{t(1+\delta) 2 n}}=\left(\frac{1}{\left(2-e^{t}\right) e^{t(1+2 \delta)}}\right)^{n}
$$

Taking the derivative by t, and setting it equal to zero shows that this term takes its minimum for $t=\ln (1+\delta /(1+\delta))$, which implies $e^{t}<2$ as desired. We therefore have the bound

$$
\operatorname{Pr}[X>(1+\delta) 2 n] \leq\left(\left(1-\frac{\delta}{1+\delta}\right)\left(1+\frac{\delta}{1+\delta}\right)^{(1+2 \delta)}\right)^{-n} \quad(* *)
$$

This becomes a bit tighter than the result from (a) if δ becomes small. Let $\varepsilon>0$ be some small constant. Then there is some δ_{0} such that for all $\delta<\delta_{0}$, we have:

$$
\begin{array}{r}
1-\delta /(1+\delta)>\exp (-\varepsilon) \\
(1+\delta /(1+\delta))^{(1+\delta) / \delta}>\exp (1-\varepsilon) \\
\delta^{2} /(1+\delta)+\delta>\delta^{2}
\end{array}
$$

We can use these to bound $(* *)$:

$$
(* *) \leq\left(\exp \left(-\varepsilon+(1-\varepsilon)\left(\delta^{2} /(1+\delta)+\delta\right)\right)\right)^{-n} \leq \exp \left(-n\left((1-\varepsilon) \delta^{2}-\varepsilon\right)\right)
$$

Thus, we come arbitrarily close to $\exp \left(-n \delta^{2}\right)$ as ε tends to 0 .

Problem 3

(a) The probability of a sample yielding the mean of $n / 2$ can be approximated by Stirling's formula as follows:

$$
\frac{\binom{n}{n / 2}}{2^{n}}=\frac{n!}{(n / 2)!^{2} 2^{n}} \approx \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{\pi n\left(\frac{n}{2 e}\right)^{n} 2^{n}}=\sqrt{\frac{2}{\pi n}}=\Theta(1 / \sqrt{n})
$$

It is also not hard to see that all other outcomes have lower probability. It follows that the range of values in $n / 2 \pm c \sqrt{n}$ has total probability $O(c)$, so by appropriate choice of the constant, one can achieve the desired probability of being outside the range.
(b) We use the set notation, where we have a universe $U=\{1, \ldots, n\}$, subsets S_{1}, S_{2}, \ldots, $S_{n} \subseteq U$, and a partition $P \subset U$. We call a partition good for S_{i} if the discrepancy of S_{i} is at most $2 / 3 c \sqrt{n}$, where c is chosen according to part (a). A partition is good for a choice of sets $\bar{S}=\left(S_{i}\right)_{i=1, \ldots, n}$ if it is good for all sets.

We choose the sets as follows: we set $S_{1}=U$, and let the other S_{i} be independent random sets that include each element with probability $1 / 2$. We want to show that there exists a choice of sets \bar{S}, so that no partition is good for it. Using the probabilistic method, this amounts to showing:

$$
\operatorname{Pr}_{\bar{S}}[\exists \text { good partition } P \text { for } \bar{S}]<1
$$

We have

$$
\begin{aligned}
\operatorname{Pr}_{\bar{S}}[\exists \text { good partition } P \text { for } \bar{S}] & \leq \sum_{P} \operatorname{Pr}_{\bar{S}}[P \text { is good for } \bar{S}] \\
& =\sum_{P} \prod_{i=1}^{n} \operatorname{Prr}_{S_{i}}\left[P \text { is good for } S_{i}\right]
\end{aligned}
$$

by a union bound and the independence of the S_{i}. Let P be fixed in the following, and we will estimate $\Pi_{i=1}^{n} \operatorname{Pr}_{S_{i}}\left[P\right.$ is good for $\left.S_{i}\right]$. Since $S_{1}=U$, this quantity is non-zero only if

$$
\begin{equation*}
|P| \in[n / 2-c \sqrt{n} / 3, n / 2+c \sqrt{n} / 3], \tag{*}
\end{equation*}
$$

since P would otherwise split S_{1} too unevenly. So we can assume that P is in this range for the following.
Consider some set S_{i} for $i \geq 2$. Let X, Y, Z be the following random variables:

$$
X=\left|S_{i} \cap P\right|, \quad Y=\left|S_{i} \cap \bar{P}\right|, \quad Z=\left|\bar{S}_{i} \cap \bar{P}\right| .
$$

Note that all three are Poisson variables, and that $Y+Z=n-|P|$. So we have:

$$
\begin{aligned}
1-\operatorname{Pr}\left[P \text { is good for } S_{i}\right] & =\operatorname{Pr}\left[|X-Y| \geq \frac{2}{3} c \sqrt{n}\right] \\
& =\operatorname{Pr}\left[|X+Z-n+|P|| \geq \frac{2}{3} c \sqrt{n}\right] \\
& =\operatorname{Pr}\left[X+Z-n+|P| \geq \frac{2}{3} c \sqrt{n}\right]+\operatorname{Pr}\left[X+Z-n+|P| \leq-\frac{2}{3} c \sqrt{n}\right] \\
& \stackrel{(*)}{\geq} \operatorname{Pr}[X+Z \geq n / 2+c \sqrt{n}]+\operatorname{Pr}[X+Z \leq n / 2-c \sqrt{n}] \\
& =\operatorname{Pr}[|X+Z-n / 2| \geq c \sqrt{n}] \geq \frac{3}{4}
\end{aligned}
$$

It follows that the probability that P is good for S_{i} is at most $1 / 4$. So we have

$$
\begin{aligned}
\operatorname{Pr}_{\bar{S}}[\exists \text { good partition } P \text { for } \bar{S}] & \leq \sum_{P} \prod_{i=1}^{n} \operatorname{Pr}_{S_{i}}\left[P \text { is good for } S_{i}\right] \\
& \leq 2^{n} \cdot \frac{1}{4^{n-1}}<1,
\end{aligned}
$$

which proves the existence of the desired sets for large enough n.

Problem 4 In the analysis of the min-cut algorithm (cf. section 1.1 in the text), it was shown that the algorithm chooses a particular min-cut with probability $1 /\binom{n}{2}$ (see page 8 of the text). If there were k different minimum cuts, then the probability that any one of them would be output is at least $k /\binom{n}{2}$. This follows from the fact that these resultant events are all disjoint; if one min-cut is chosen then no other min-cut is chosen on that run of the algorithm. If there were $\binom{n}{2}$ min-cuts, then the probability that any one at all would be chosen would be exactly 1 . If there were more, the probability of a min-cut being found would be greater than one, which is a contradiction. Thus the number of min-cuts in a graph cannot exceed $\binom{n}{2}$.

Note that it is incorrect to argue that since the algorithm collapses edges until two vertices remain, and there are at most $\binom{n}{2}$ pairs of vertices that could be left at the end, the number of min-cuts is bounded by the same number. This reasoning is unsound, as multiple reductions can lead to the same pair of nodes. Consider a ring graph with four nodes, numbered clockwise $1,2,3,4$. One could reduce the graph to 1,2 by contracting 3 and 4 into 1 , or contracting 3 and 4 into 2 . The pair 1,2 represents at least two different cuts, one separating the graph into 1 and $2,3,4$ and one into $1,3,4$ and 2 . Thus a pair can represent more than one minimum cut, and the argument that there are $\binom{n}{2}$ pairs of vertices is insufficient to prove the bound.

