
6.856 — Randomized Algorithms


David Karger 

Handout #8, September 30, 2002 — Homework 3 Solutions 

Problem 1 

We may think of asking a resident as flipping a coin with bias p=f. Flip the coin N times. 
If you get k heads, set p̂ = k/N . Note k has a binomial distribution with mean µ = pN . 
Thus, using Chernoff bounds: 

Pr[ p− p̂ > �p] = Pr[ µ− k > �µ]| | | | 
= Pr[µ− k > �µ] + Pr[k − µ > �µ] 

= Pr[k < (1 − �)µ] + Pr[k > (1 + �)µ] 

≤ e−�2µ/2 + e−�2 µ/3 

≤ 2e−�2µ/3 

= 2e−�2N p/3 

(the constant 3 in the second to last line follows from the fact that we are assuming � < 1). 
Set this bound equal to δ, and solve for N to find that 

N = 3 ln(2/δ)/(�2 p) 

trials suffice. Since p ≥ a by assumption, certainly 

N = 3 ln(2/δ)/(�2 a) 

trials suffice. 
An interesting additional exercise is to show that even if we do not have any a priori 

bound a on p, we can still estimate p as above in O(ln(2/δ)/(�2p)) trials with probability 
exceeding 1 − δ. 

Problem 2 

We show that with high probability, every element is compared to O(log n) pivots. This 
proves that there are O(n log n) comparisons overall. To prove our claim, take a particular 
element x and consider the series of recursively defined subproblems S = S1, S2, . . . into 
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which element x is placed. Subproblem Sk+1 is constructed from Sk by choosing a random 
pivot element from Sk and placing into Sk+1 all elements on the same side of the pivot as x. 

Of course, once Sk has size 1, it contains only 1 element, namely x, and the recursion 
stops. We show that with high probability, there is an r = O(log n) such that Sr has 
exactly one element. This proves our initial claim. To do so, call a subproblem Sk good if 

3 Sk |. Since S1 = n, if the sequence S1, . . . , Sr contains log4/3 n good subproblems |Sk+1| ≤ 
4 | | |

then Sr | ≤ 1. So we just need to show that with high probability S1, . . . , Sr has log4/3 n|
good subproblems. 

To do this, note that since the pivot that yields Sk+1 is chosen uniformly at random from 
Sk , the probability that Sk is good is at least 1/2, independent of the goodness of all the 
other subproblems (a slight subtlety here: conditioning on the goodness of previous problems 
can bias the probability of Sk+1 being good, but cannot bring the probability below 1/2). 
It follows that the number of good subproblems in the sequence S1, . . . , Sr stochastically 
dominate a binomial distribution with mean at least r/2. Thus, the probability of fewer 

= e−r/16than, say, r/4 good subproblems is, by the Chernoff bound, at most e−(1/2)2(r/2)/2 . 
It follows that if we take r = 32 ln n, then since log4/3 n < 16 ln n, 

Pr[|Sr > 1] Pr[less than log4/3 n good subproblems] | ≤ 

Pr[less than 16 ln n good subproblems] ≤ 

≤ 1/n2 

Thus the probability that any one of the n elements encounters more than 32 log n pivots 
is less than 1/n. 

A common mistake was to assume that the the variables Xij , defined to be 1 if j is a pivot 
to which i compares, were independent. The only approach on this problem set that lead to 
a solid alternate solution on was to show that {Xij i < j} and {Xij i > j} are independent, | |
and apply Chernoff to them separately. 

Problem 3 

(a) Suppose we throw k balls into n bins. Let X1, X2, . . . , Xk be random variables, so that 
Xi is 1 if the i-th ball lands in a bin by itself, and 0 otherwise. The probability that a 
certain ball lands in a bin by itself is equal to the probability that all other balls land in 
different bins, i.e. (1 − 1/n)k−1 . 

The total number of balls that land in a bin by themselves are therefore Xi, and we 
have to determine E[ Xi]. By linearity of expectation, we have


�� � � �k−1

1 

E Xi = kE[X1] = k 1 − 
n 

So if k = εn, then the number of bins with only one ball in them is 

nε− E Xi = nε(1 − 1/n)nε−1 ≥ nε/eε . 
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Thus, the number of balls we are expected to keep is at most 

nε − nε/eε = nε(1 − 1/eε). 

(b) If everything went according to expectation, then after i rounds the size of our set would 
be nεi, where εi satisfies the recurrence 

εi+1 = εi(1 − exp(−εi)) ≤ εi (1 − (1 − εi)) = ε2 
i 

This implies that 

log εi+1 ≤ 2 log εi. (1) 

Obviously, we have ε0 = 1, but the result from (a) shows that after one round, we expect 
ε1 = 1 − 1/e ≈ 0.63212. With (1) this implies 

log εk ≤ 2k−1 log(1 − 1/e) (2) 

The number of rounds until we have no elements left is equal to the smallest k such 
that nεk < 1, which is equivalent to log εk ≤ − log n. Using (2) this works out to 
log(1 − 1/e) · 2k−1 ≤ − log n, and taking log’s yields k = Θ(log log n). 

(c) In expectation, < 1 − e−1 remain after 1 round. So, by the Markov Inequality, 

1 
P r[remaining fraction > cµ] < , c > 1 

c 

1
)O(lg lg n) ⇒ after O(lg lg n) rounds, P r[remaining fraction > c�(1 − e−1)] < ( 

c 

for appropriately chosen c’. So w.h.p (1-o(1)), we reach � = c�(1 − e−1) after O(lg lg n) 
rounds. 

Suppose that instead of going from � to �2 , we were only able to reduce to t�2 for 
constant t > 1. Setting up the recurrence and solving it as in (b), it can be shown that 
for appropriately chosen t, we still require O(lg lg n) rounds to complete if everything 
proceeds according to expectation. Define a good round to be one in which the fraction 
remaining is less than t times the expected. Then, by the Markov Inequality, we bound 
the likelihood of a bad round: 

1 
P r[fraction remaining > tµ] <

t 
⇒ P r[good round] > 1 − 1/t 

Hence, we require < 
1−

1
1/t O(lg lg n) = O(lg lg n) rounds in expectation to get rid of all 

balls. Since the rounds are independent, and we can think of “goodness” as an indicator 
variable, we may Chernoff bound the number of rounds required: 

1 
P r[rounds > d lg lg n] < 2−D lg lg n < 2−D lg lg n = 

(lg n)D 
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for some constants d and D. 

Thus w.h.p(1-o(1)), it takes another O(lg lg n) rounds from � = c�(1−e−1) to get rid of all 
balls. Therefore, overall, the process takes O(lg lg n) rounds w.h.p, since (1 − o(1))(1 − 
o(1)) = 1 − o(1). 

A common mistake was to define a good round to be one in which we reach the expected 
fraction for the i-th round on the i-th round. These rounds are not independent, since 
previous rounds clearly affect how likely it is to reach the expected fraction for the 
current round. Many also forgot to show that it takes O(log log n) steps to get from 1 
to a constant fraction. 

Problem 5 

(a) Consider the function 

t(λx+(1−λ)y)g(λ) = λetx + (1 − λ)ety − e . 

We show that for any fixed t, x and y > x, g(λ) > 0 in the interval 0 < λ < 1. This 
proves the claim. First note that g(0) = g(1) = 0. We now prove that there are no 

λ ∈ [0, 1] for which g(ˆother ˆ λ) = 0. Suppose there were. Then by Rolle’s theorem, 
ˆthere would have to be two zeroes of g�(λ), one in the interval [0, λ] and one in the 

ˆinterval [λ, 1]. We show in contradiction that there is at most one such point. To 
see this, note that 

tx − ety	 t(λx+(1−λ)y)t(x− y).g�(λ) = e − e 

Solving, we find that g�(λ) = 0 only if 

t(λx+(1−λy)) ety − etz 

e = . 
t(y − x) 

It is easy to verify that the left hand side is monotonic in λ, meaning the equation 
has a unique solution in λ. 

(b) Observe	 that if we replace λ the previous step by our random variable Z, since 
0 ≤ Z ≤ 1, 

f(Z) =	 f((1 − Z) · 0 + Z · 1) 

(1 − Z) · f(0) + Z · f(1).≤ 

Now for random variables X and Y , if X ≤ Y , it is easy to prove that E[X] ≤ E[Y ]. 
It follows that 

E[f(Z)] E[(1 − Z) · f(0) + Z · f(1)]≤ 

=	 (1 − p) · f(0) + p · f(1) 

=	 E[f(X)] 
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(c) Let	E[Yi] = p, 0 ≤ p ≤ 1, Let Xi be 1 with probability p and define X = Xi; 
by the previous section we know that E[etYi ] ≤ E[etXi ] for any t. Write δ = δ/E[Y ] 
and µ = E[Y ]. We know that 

Pr[Y − E[Y ] > δ] = Pr[Y > (1 + δ)E[Y ]] 

E[etY ]≤ 
et(1+δ)µ 

E[etYi ] 
= 

et(1+δ)µ 

E[etXi ]≤ 
et(1+δ)µ 

where the last line follows from our convexity argument. The last line, however, is 
directly out of the proof of the Chernoff bound on Pr[X > (1 + δ)µ], so we can jump 
directly to the end of that analysis to derive a bound on the deviation probability. 

Lets focus on the harder case of δ small (that is, less than 2e − 1). Suppose first 
that µ < n/3. Then the error probability is at most 

2 
µ/4 −δ2/4µe−δ =	 e

e≤ −3δ2/4n 

To get good bounds for µ > n/3, consider the following trick: let Zi = 1 − Yi be a 
random variable in the interval [0, 1], and consider Z = Zi = n− Yi = n− Y . 
Write δ̂ = δ/E[Z]. The Chernoff bound tells use that 

Pr[Y − E[Y ] > δ]	 = Pr[E[Z] − Z > δ] 

= Pr[Z < E[Z] − δ] 

= Pr[Z < (1 − δ̂)E[Z] 
δ2E[Z]/2≤	 e−
ˆ

−δ2/2E[Z]= e
−δ2/2(n−µ)= e

which, under the assumption that µ > n/3, is at most e−3δ2/4n 

Problem 6 

We are only going to prove the first part, i.e. giving the upper tail bound. For a proof 
for the lower tail, see [KMPS94]. 

First, let us prove E [Xi1 Xi2 · · ·Xik ] ≤ E [Xi1 ] E [Xi2 ] E [Xik ] (for i1, i2, . . . , ik distinct· · ·
integers in [1, n]). 
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First we know that 

1 n 

E [Xi1 ] = E [Xi2 ] = = E [Xik ] = 1 −· · · 
n 

As well, 

E [Xi1 Xi2 Xik ] = Pr (Xi1 ∩Xi2 ∩ . . . ∩Xik )· · · � �
k n 

= 1 − since i1, i2, . . . , ik are distinct 
n 

We now note that � �k � � � �2
1 k k 1 k 

= 1 − +1 − 
n n 2 n 

− · · · ≥ 1 − 
n 

Thus �� �n�k � 
k 
�n

1 
1 − 1 −

n 
≥ 

n 

which implies that 

E [Xi1 ] E [Xi2 ] E [Xik ] ≥ E [Xi1 Xi2 Xik ]· · · · · ·

Since each Xil only takes on a value of either 0 or 1, we know that Xm = Xil and then il 

Xm1 Xm2 Xmk = E [Xi1 Xi2 Xik ]E i1 i2 ik
· · · · · ·

So, using the results above, 

Xm1 Xm2 Xmk ≥ E Xm1 Xm2 XmkE i1 
E i2 

E ik i1 i2 ik
· · · · · ·

We now note that E Xi
�
l 

= E [Xil ] and that E Xi
�
1 
X � Xi

�
k 

= E Xi
�
1 

E Xi
�
2 

E Xi
�
ki2 

· · · · · ·
by which we can now conclude that 

m1 m2 mkE X �
i1 

X �
i2 

X �
ik 

= E Xi
�
1 

E Xi
�
2 

E Xi
�
k

· · · · · ·
= E [Xi1 ] E [Xi2 ] E [Xik ]· · ·

E [Xi1 Xi2 Xik ]≥ � · · · � 
E i1 i2 

(3)ik
≥ Xm1 Xm2 · · ·Xmk 

Xm2 XmkSince the expansion of ( Xi)
m contains only terms like Xm1 , we know, i i1 i2 ik

· · ·
from the linearity of expectation that ⎡� �k 

⎤ �k 
⎤⎡� 

E ⎣ Xi
� ⎦ ≥ E ⎣ Xi ⎦ 

i i 
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which implies that 

E Zk ≤ E Y k 

Since the Taylor series expansions of etZ and etY match up term by term with terms that 
look like a positive (for t ≥ 0) constant multiplied by Zk and Xk , again, by the linearity 
of expectation, we can note that 

tYE e tZ ≤ E e 

So, letting µ = E[Z], we get 

t(1+δ)µPr [Z > (1 + δ) µ] = Pr e tZ > e 

E etZ 

< 
et(1+δ)µ 

E etY 

< 
et(1+δ)µ 

µ
δe

< 
(1 + δ)(1+δ) 

(4) 

References 

[KMPS94] A. Kamath, R. Motwani, K. Palem, P. Spirakis, Tail Bounds for Occupancy 
and the Satisfiability Threshold Conjecture, Proceedings FOCS 1994, pp. 592–603. 

7



