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1.	 (a) The loops make it aperiodic, and so we merely need show irreducibility(strong connectedness) 
to get unique stationary distribution. We need to show that from a pair (T1, r1), we can get 
to another pair (T2, r2). Note first that for a given spanning tree T, we can always get from 
(T, r1) to (T, r2) simply by moving the root along the edges of the tree. So it remains to show 
that we can get from one spanning tree to another. Note that since all spanning trees have 
the same number of edges, the set of edges that belong to T1 and not T2 must be equal in 
size to the set that belongs to T2 and not T1, s.t. the union of these two sets U is even in 
size. Pick any edge e in T2 − T1. This creates a cycle in T1 ∪ e, hence there must be some e’ 
on the cycle that is also in T1 − T2. We walk the root to an endpoint of e and move the root 
over e to add e, and remove the edge after e in the direction of root movement, as dictated 
by the rooted spanning tree transition rule. But now we can continue doing this around the 
cycle until we add the edge before e’, and delete e’. Now, we have added e to and removed e’ 
from T1, and reduced the difference set U in size by 2. We continue until |U = 0, at which |
point we have changed T1 into T2, and thus this MC is irreducible. 

(b) Other than the selftransition, there are exactly d rooted spanning trees that can transition 
to a given rooted spanning tree. To see this, consider the edge incident on r that must be 
dropped from the spanning tree when we transition to r as root. If it is an edge in the given 
spanning tree, then this corresponds to the rooted tree with the same spanning tree but rooted 
at a neighbor of r. If the edge is not in the given spanning tree, then it determines the rooted 
spanning tree that transitions to the given one, since it determines the neighbor v of r that 
was root, and designates that the edge (v,r) is not in this spanning tree(but will be in the 
given one). Thus, each such edge corresponds to exactly one distinct rooted spanning tree, 
and so there are exactly d+1 of them that can transition to a given one. Since each transition 

1occurs with probability d+1 , the columns of this transition matrix also sum to 1 and so we 
have a doubly stochastic matrix for which the uniform distribution is stationary. Since there 
are n possible roots per spanning tree, and the stationary distribution is uniform over rooted 
spanning trees, it is also uniform over spanning trees. 

(c) We will show that if r is the last vertex to replace v as root, then the edge (v,r) is in the final 
spanning tree, and hence such a sequence of identities suffices to determine the spanning tree 
of n1 edges. There are only two ways in which (v,r) could possibly be removed: if the root 
transitions to v or if the root transitions to r. The former cannot happen since v is never root 
again. In the latter case, without transitioning to v, (v,r) will never be on the root to leaf 
path of r, and so it will always be some other edge with endpoint r that is deleted if we ever 
transition to r. Thus, (v,r) is never removed, and so such a sequence suffices to tell us the 
spanning tree at r0. 

(d) Note that each ri represents a uniform distribution on rooted spanning trees(since we started 
in the stationary, uniform distribution), and so ri is a vertex drawn from the uniform dis
tribution of vertices. The standard random walk on G is time reversible and so the uniform 
distribution is stationary for such a MC. But since we start at r0 with a uniform distribution 
by picking a vertex at random, subsequent vertices r−k will all be from the uniform distribu
tion(by definition of stationary), and so we have the correct distribution on sequences of roots. 

(e) Running in reverse, and using the intended spanning tree generation algorithm, we see that 
we generate exactly the spanning tree at r0! This is because if ri is the last root to take over 
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from vi, then in reverse, it is the first time that we see vi, and so the edge (vi, ri) is put in 
the spanning tree(and stays). But, this is exactly the spanning tree at r0, and since that one 
is a uniformly random spanning tree, so is the one we generate. 

(f) We only run until we see all vertices, so the expected running time is the expected cover time, 
which is polynomial. 

2.	 (a) Let p be the fraction of spanning trees containing e. One of p, 1p is large enough to get us a 
FPRAS for p or 1p, by the standard sample and check method, using the sampling method 
generalized from problem 1. 

(b) If we are estimating p(as defined above), then it suffices to “protect” edge e by contracting it 
and estimating the number of spanning trees in the remaining graph G’, since any spanning 
tree in G’ corresponds to a spanning tree in G that includes e. Similarly, if we are estimating 
1p, then we delete edge e and estimate the number of spanning trees in G’. In the end, 
to estimate the number of spanning trees S from the estimate S’ in the residual graph G’, 
we merely calculate S=S’/p or S=S’/(1p) depending on which of the fractions we chose to 
estimate. 

(c) Sample until we get µ � hits of either spanning trees with e or spanning trees without e, δ

m m


for some e, where m is the number of edges. Since one of p, 1p is big enough, this takes 
polynomial time in expectation. If we ended up estimating p, recurse on the residual graph 
with e contracted, otherwise recurse on the residual graph with e deleted. In the base case 
of a single spanning tree, we terminate and declare(correctly) that the count in the residual 

1graph is 1. Now, by (b), we merely calculate S = � , where qi is the estimate of the ith 
qi 

fraction(p or 1p value), to get our estimate for the number of spanning trees. There are at 
most m iterations, and each iteration takes expected polynomial time, so the entire algorithm 
takes expected polynomial time. Each 1/qi has error �/m(actually it is the inverse of 1 + �, 
but this is off by a constant factor which we can tweak away), so that the product has error at 
most �. By Union bounding the failure probabilities of each step, we get that we fail overall 
with probability at most δ. This gives us our FPRAS. 

(d) We sample as follows. For some edge e, count the number T of spanning trees, and the 
Cnumber C of spanning trees with e. With probability T , include the edge e and recurse on 

the residual graph with e contracted, otherwise recurse on the residual graph with e deleted. 
When we arrive at the base case of a single spanning tree, return it as our sample. Note that 
this takes at most m iterations and each one requires 2 count invocations, for a total of at 
most 2m calls to the counting algorithm. We now show that this is uniform sampling. Let Ci 

be the sequence of number of spanning trees in each residual graph that contains a specific 
spanning tree, where C1 = T , the total number of spanning trees. For our given spanning 

C2 C3tree, the probability that we pick it is T C2 
. . . 1 = 1 by telescoping, and so our sample Ck T· 

is uniform. 
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