
� 

� 

� 

� 

6.856 — Randomized Algorithms


David Karger 

Handout #25, December 5th, 2002 — Homework 12 Solutions 

Problem 1 

(a) Consider the vector π = (1, 1, . . . , 1). Then πP is just the sum of the rows of P , which 
is just the vector of column sums, each of which is 1 by assumption. So πP = π. Thus, 
π, normalized to unit sum, is a stationary distribution for P . 

(b) If pij = pji, then the i-th column sum is equal to the i-th row sum, which is 1 (since P is 
stochastic). Thus the matrix is doubly stochastic, so by the previous part its stationary 
distribution is uniform. 

(c) Suppose πipij = πjpji for each i and j. Then the kth coordinate of πP , 

(πP )j = πipij 

i 

= πjpji 

i 

= πj pji 

i 
= πj 

since i pji is just the probability of transitioning out of j, which is 1. Thus π is 
stationary. 

Problem 2 

Our algorithm is the following: color the graph arbitrarily with two colors. Then, as long 
as there is a mono-chromatic triangle (all three points the same color), flip the color of a 
random vertex in that triangle. 

We will now show that this actually converges to a stable configuration in polynomial 
time. For this purpose, fix any legal three-coloring C of the graph (say using colors red, green 
and blue). Suppose that we use the colors red and green in our two-coloring. Let k be the 
number of nodes which have the same colors in C and our current coloring. Suppose that we 
do not yet have a legal two-coloring. How does k change in this case? 

If we have a mono-chromatic triangle, say all nodes red, then flipping a random node to 
green can have the following effect (recall that in C all three nodes have different colors!). 

1




With probability 1/3 we flip the node which is red in C, and k decreases by one. With 
probability 1/3 the green node in C gets flipped, and k increases by one. And, finally, with 
probability 1/3, we flip the blue node, and k does not change. 

This corresponds to a Markov process that traverses a line graph of length n (k is always 
between 0 and n), going left and right (and staying still) with equal probability. In class 
we showed that the cover time for such a line graph is O(n2), and hence our algorithm 
terminates in polynomial time. 

Problem 3 

Suppose our graph is G = (V, E). Now consider the graph G� = (V × V, E �), where 

E � := { ((a, b), (c, d)) (a, c), (b, d) ∈ E }.| 

First we show that if G is connected and non-bipartite, then so is G�. If G� is non-bipartite, 
then it has an odd cycle v1, v2, . . . , vk . But then so has G� with (v1, v1), (v2, v2), . . . , (vk , vk ), 
and is therefore also non-bipartite. As for connectivity, consider two vertices (a, b) and (c, d) 
in G�. There are paths in G from a to c, and from b to d. Moreover, these paths can be made 
to have the same length (although they are not necessarily simple then). This can done as 
follows: 

•	 if the two path lengths have different parity (i.e. one has even length, the other has 
odd length), then do the following: consider a path from a to c that goes through v1 

(since G is connected, this – not necessarily simple – path exists). If this path’s length 
does not have the same parity as the length of the path from b to d, then add the odd 
cycle v1, v2, . . . , vk , v1 to the path from a to c. Since the path visits v1 this cycle can 
just be inserted. After this, both path lengths have the same parity. 

•	 if they still have different lengths, make the shorter of the two paths longer by adding 
2-cycles at its end. E.g., if the path from a to c is shorter, and x is some neighbor of c, 
then add a sequence c, x, c, x, . . . , x, c to the end of the path to make it have the same 
length as the other path. 

Given two paths of the same length from a to c, and b to d, we can easily construct a path 
in G� from (a, b) to (c, d), by following the path from a to c in the first component, and the 
path from b to d in the second component. So G� is connected. 

Now back to the problem of parallel Markov processes. A random walk G� has the 
same behavior as two independent random walks on the graph G. This is because we have 
degG

� ((u, v)) = degG(u) degG(v), so the probability to go from a node (a, b) to a node (c, d) 
in G� is the same as independently going from a to c, and from b to d in two random walks 
on G. 

In class we proved a cubic cover time for any undirected graph, so in particular G� has 
a cover time of O((n2)3) = O(n6). This implies that all nodes of the form (a, a) in G� are 
reached in polynomial time, which means that the two random walks meet in polynomial 
time. 

2 



In other words, if all drivers in Boston were driving randomly (as observations would 
seem to suggest), any pair of them will meet each other in polynomial time. 

Point distribution: 1 point for defining G�, 2 points for arguing that the transition prob
abilities modeled two independent Markov processes, 2 points for proving G� non-bipartite, 

63 points for proving G� connected, 2 points for showing a O(n ) cover time. 

Problem 4 

Consider the directed graph on nodes 1, . . . , n which has directed edges (i, i + 1) and (i, 1) 
for all i. A sequence of transitions that gets from vertex 1 to vertex n must have an uninter
rupted sequence of n transitions along edges (i, i+ 1). The probability of such a subsequence 
occurring in a given sequence of n tries is 2−n, so in a sequence of length (say) 1.9n, such a 
subsequence is exponentially unlikely to occur. Thus, with high probability it takes expo
nential time to cover the graph. 

3



