Homework 10 Solutions

1. (a) Let the graph be $G=(V, E)$ with $|V|=n$. Construct a graph $G(p)$ on V by including each $e \in E$ with probability $p=12 \log n /\left(c(\epsilon / 2)^{2}\right)$. By max-flow/min-cut the $s-t$ min-cut of G has value v. As in lecture, w.h.p. the $s-t$ min-cut in $G(p)$ has value at most $(1+2 \cdot(\epsilon / 2)) v=(1+\epsilon) v$ in G. Such a cut is saturated by a $s-t$ max-flow, which can be found using the augmenting path algorithm on $G(p)$.
Constructing $G(p)$ takes $O(m)$ time. From lecture, w.h.p. $G(p)$ has at most $(1+\epsilon) p m$ edges and has min-cut at most $(1+\epsilon) p v$, so augmenting paths runs for at most $(1+\epsilon) p v$ iterations (by max-flow/min-cut). The expected number of iterations is constant (since we have w.h.p. statement), so for constant ϵ the expected running time is

$$
O(m)+O(p m \cdot p v)=O\left(m+m v \log ^{2} n / c^{2}\right)=\tilde{O}\left(m+m v / c^{2}\right)
$$

(b) For the p above, construct $1 / p$ graphs on V by independently and randomly placing each edge in one of the graphs. Note that each graph is a sampled graph, so as in lecture, w.h.p. the $s-t$ min-cut in each graph is at least $(1-\epsilon) p v$. For each graph, run the augmenting path algorithm and return a $s-t$ max-flow. Output the union F of these flows.
From lecture, the probability that a sampled graph does not have $s-t$ min-cut at least $(1-\epsilon) v$ is at most $O\left(n^{-2}\right)$. By the union bound, the probability that one of the $1 / p$ sampled graphs "fails" is at most $1 /\left(p n^{2}\right)=O(1 / n)$; therefore w.h.p. all of the graphs has a $s-t$ min-cut at least $(1-\epsilon) p v$. Since the graphs are edge disjoint, the union of their flows has value equal to their sum; therefore w.h.p. F has value $\frac{1}{p} \cdot(1-\epsilon) p v=(1-\epsilon) v$.

As above, augmenting paths takes $\tilde{O}\left(m v / c^{2}\right)$ for each sampled graph. Since we run it on $1 / p$ sampled graphs, the expected running time is $\frac{1}{p} \cdot \tilde{O}\left(m v / c^{2}\right)=\tilde{O}(c) \cdot \tilde{O}\left(m v / c^{2}\right)=\tilde{O}(m v / c)$.
(c) The algorithm runs as follows. Construct graphs G_{1}, G_{2} on V by placing each edge independently and randomly in G_{1} or G_{2}. Apply the algorithm recursively on G_{1} and G_{2}. Take the union F of the resulting flows and run augmenting paths from F to complete the max-flow (so it is always correct). As a base case we can take the case where $s-t$ max-flow is 0 .
Here, we are computing $G(p)$ (as in lecture) with $p=1 / 2$, so G_{1}, G_{2} have $m / 2$ edges, $s-t$ max-flow $v / 2$ and min-cut $c / 2$ in expectation. Also, $\epsilon=\tilde{O}\left(c^{-1 / 2}\right)$, so w.h.p. the $s-t$ max-flow in each graph is at least $\left(1-\tilde{O}\left(c^{-1 / 2}\right)\right) v / 2$. It follows that w.h.p. F has value $v-\tilde{O}(v / \sqrt{c})$, so augmenting paths runs for $\tilde{O}(v / \sqrt{c})$ iterations, taking $\tilde{O}(m v / \sqrt{c})$ time. The recursion is then

$$
T(m, v, c)=T(m / 2, v / 2, c / 2)+\tilde{O}(m v / \sqrt{c})
$$

which solves to $\tilde{O}(m v / \sqrt{c})$. As in lecture, this is a probabilistic recurrence, so we need to analyze the recursion tree (as in DAUG) to show that this is in fact the running time.
2. (a) Let a, b and c be three non-collinear points. Let $\ell_{a b}$ and $\ell_{b c}$ be the perpendicular bisectors of segments $\overline{a b}$ and $\overline{b c}$, respectively. Since the points are not collinear, $\ell_{a b}$ and $\ell_{b c}$ intersect at a unique point p. This is the only point equidistant to a, b and c. Therefore p is the center of the unique circle \mathcal{C}_{p} containing a, b, c on its boundary. Computing the perpendicular bisectors takes constant time (midpoint, slope); finding the intersection takes constant time.
(b) Lemma: It is not possible to translate $O(H)$ without excluding some point of H.

Proof. Suppose the claim is false; then there exists a direction \mathbf{v} and $\epsilon>0$ such that for all $t \in[0, \epsilon], S \subset O(H)$ when $O(H)$ is translated by $t \mathbf{v}$. For $p \in H$, let $d_{p}\left(t^{\prime}\right)$ be the distance from p to $O(H)$ when $t=t^{\prime}$. If $d_{p}\left(t_{0}\right)=0$ then for some $t_{p}>0, d_{p}\left(t_{0}+t^{\prime}\right)>0$ for $t^{\prime} \in\left(0, t_{p}\right)$ (a point cannot stay on the boundary as the circle is translated). Therefore there exists a $\delta \in[0, \epsilon]$ such that $d_{p}(\delta)>0$ for all $p \in H$. But this implies the circle at $t=\delta$ can be contracted to give a smaller circle containing H, a contradiction.

Let $\mathcal{B}(H)$ be the input points on the boundary of $O(H)$. By the setup, $|\mathcal{B}(H)| \leq 3$. If $|\mathcal{B}(H)|<2$ then $O(H)$ can be translated in a way contradicting the lemma. If $|\mathcal{B}(H)|=2$ then these boundary points must be endpoints of a diameter. Therefore there are $\binom{n}{2}+\binom{n}{3}$ possibilities for $B(H)$, representing $\mathcal{B}(H)=2,3$, respectively. Each possibility defines a unique circle: for $|\mathcal{B}(H)|=2$, the center is at their midpoint; for three points, refer to part a. Therefore there are $O\left(n^{3}\right)$ circles to consider, each of which takes $O(1)$ time to define by part a. Testing if all input points are contained in a circle takes $O(n)$ time: measure the distance from each input point to the center and check if this distance is less than the radius. Therefore we can find $O(H)$ in $O\left(n^{4}\right)$ time.
(c) Suppose $O(H) \neq O(B(H))$. Then $O(B(H))$ excludes a point of $B(H)$ on its boundary, so there are two basis points defining a diameter of $O(B(H))$. Therefore the arc of $O(H)$ defined by the three basis points is smaller than 180 degrees. Note that $O(B(H))$ and $O(H)$ have distinct centers $c_{B(H)}, c_{H}$ respectively, since $c_{B(H)}$ is not equidistant to all points of $B(H)$. No other points are on the boundary of $O(H)$, so c_{H} can be translated toward $c_{B(H)}$ by some $\epsilon>0$ while keeping H within $O(H)$, since translating toward $c_{B(H)}$ decreases distances from c_{H} to the basis points. This violates the lemma from 2 b , a contradiction. Therefore $O(H) \neq O(B(H))$.
(d) Let $S^{\prime}=S \cup\{p\}$. If p is not contained in $O(S)$ then by part c, $O(S) \neq O\left(B\left(S^{\prime}\right)\right)$. By the contrapositive of part c, $S^{\prime} \subset O\left(B\left(S^{\prime}\right)\right)$. Suppose $B\left(S^{\prime}\right) \subset S$; then $O\left(B\left(S^{\prime}\right)\right) \leq O(S)$ (in size). Since $S \subset S^{\prime} \subset O\left(B\left(S^{\prime}\right)\right), O(S) \leq O\left(B\left(S^{\prime}\right)\right)$ (in size). Therefore $O\left(B\left(S^{\prime}\right)\right)$ and $O(S)$ have the same size. Since $O(S) \neq O\left(B\left(S^{\prime}\right)\right)$ the Lemma from 2 b is violated, a contradiction. Therefore the assumption is incorrect, and $p \in B\left(S^{\prime}\right)$, so p is on the boundary of $O\left(S^{\prime}\right)$.
(e) Let $\mathcal{C}_{H}=\{B(T): T \subseteq H\}$. For each $x \in \mathcal{C}_{H}$, let v_{x} be the number of points of H outside $O(x)$ and let the indicator i_{x} be 1 if x is the basis of R and 0 otherwise. Let V be the number of points of H outside of $O(R)$. Then $E[|V|]=E\left[\sum_{x \in \mathcal{C}_{H}} i_{x} v_{x}\right]=\sum_{x \in \mathcal{C}_{H}} v_{x} E\left[i_{x}\right]$. Now, $E\left[i_{x}\right]$ is the probability that x is the basis of R. By 2c, x is the basis of R iff all points of R are contained in $O(x)$. There are $\binom{n}{r}$ possible R. For x to be the basis, we must choose $r-|x|$ points from the $n-|x|-v_{x}$, since x has already been included and we cannot choose anything outside of $O(x)$. Therefore $E\left[i_{x}\right]=\binom{n-v_{x}-|x|}{r-|x|} /\binom{n}{r}$. The analysis from lecture is identical here, so

$$
E[|V|] \leq \frac{|x|(n-r+1)}{r-|x|} \leq \frac{3(n-r+1)}{r-2}
$$

(f) Now define $\mathcal{C}_{H}=\{B(S \cap T): T \subseteq H\}$. Let $m=|H-S|$. For each $x \in \mathcal{C}_{H}$, let v_{x} be the number of points of H outside $O(x \cap S)$ and let the indicator i_{x} be 1 if x is the basis of R and 0 otherwise. Let V be the number of points of H outside of $O(R \cap S)$. The bound for $E[|V|]$ is the same as above, and follows nearly identically as above, replacing n with m, except we must define $q_{x}=|x-S|$. Then we must choose $r-q_{x}$ points from the $m-q_{x}-v_{x}$ (for the same reason as above).
(g) The solution is nearly identical to SampLP. Call the algorithm SampC. Keep an active subset $S \subseteq H$, initialized to \emptyset. Fix an arbitrary constant c. If $n<c$ run the algorithm from 2 b . Otherwise, pick a random $R \subseteq H-S$ of size at most $3 \sqrt{n}$ and recursively evaluate $x \leftarrow \operatorname{Samp} C(R \cup S)$. Compute the set V of points of H outside of $O(R \cup S)$. If $|V| \leq 2 \sqrt{n}$, add V to S. If $|V|=0$, return x.

The algorithm is correct: a basis x for H is found iff no points of H are outside $O(x)$. Let $T(n)$ be the maximum expected running time when $|H|=n$. Then $T(n) \leq 6 T(9 \sqrt{n})+O(n)$: since a basis element must be in V (by 2d), and by Markov's Inequality $\operatorname{Pr}[|V| \leq 2 \sqrt{n}] \leq 1 / 2$, SampC is called recursively at most 6 times. Now S is initially empty, and at most $2 \sqrt{n}$ points are added with each successful (bounded $|V|$) iteration, so the subproblems have size at most $6 \sqrt{n}$. It takes constant time to construct $O(x)$ from x, and $O(n)$ time to determine V. The recursion follows. Repeated substitution gives $T(n)=O(n)+O(\sqrt{n})+\ldots+O(1)=\tilde{O}(n)$.

