Homework 10 Solutions

1. (a) Let the graph be G = (V, E) with |V| = n. Construct a graph G(p) on V by including each $e \in E$ with probability $p = 12 \log n/(c(\epsilon/2)^2)$. By max-flow/min-cut the s - t min-cut of G has value v. As in lecture, w.h.p. the s - t min-cut in G(p) has value at most $(1 + 2 \cdot (\epsilon/2))v = (1 + \epsilon)v$ in G. Such a cut is saturated by a s - t max-flow, which can be found using the augmenting path algorithm on G(p).

Constructing G(p) takes O(m) time. From lecture, w.h.p. G(p) has at most $(1 + \epsilon)pm$ edges and has min-cut at most $(1 + \epsilon)pv$, so augmenting paths runs for at most $(1 + \epsilon)pv$ iterations (by maxflow/min-cut). The expected number of iterations is constant (since we have w.h.p. statement), so for constant ϵ the expected running time is

$$O(m) + O(pm \cdot pv) = O(m + mv \log^2 n/c^2) = \tilde{O}(m + mv/c^2).$$

(b) For the p above, construct 1/p graphs on V by independently and randomly placing each edge in one of the graphs. Note that each graph is a sampled graph, so as in lecture, w.h.p. the s - t min-cut in each graph is at least $(1 - \epsilon)pv$. For each graph, run the augmenting path algorithm and return a s - t max-flow. Output the union F of these flows.

From lecture, the probability that a sampled graph does not have s - t min-cut at least $(1 - \epsilon)v$ is at most $O(n^{-2})$. By the union bound, the probability that one of the 1/p sampled graphs "fails" is at most $1/(pn^2) = O(1/n)$; therefore w.h.p. all of the graphs has a s - t min-cut at least $(1 - \epsilon)pv$. Since the graphs are edge disjoint, the union of their flows has value equal to their sum; therefore w.h.p. F has value $\frac{1}{p} \cdot (1 - \epsilon)pv = (1 - \epsilon)v$.

As above, augmenting paths takes $\tilde{O}(mv/c^2)$ for each sampled graph. Since we run it on 1/p sampled graphs, the expected running time is $\frac{1}{p} \cdot \tilde{O}(mv/c^2) = \tilde{O}(c) \cdot \tilde{O}(mv/c^2) = \tilde{O}(mv/c)$.

(c) The algorithm runs as follows. Construct graphs G_1, G_2 on V by placing each edge independently and randomly in G_1 or G_2 . Apply the algorithm recursively on G_1 and G_2 . Take the union F of the resulting flows and run augmenting paths from F to complete the max-flow (so it is always correct). As a base case we can take the case where s - t max-flow is 0.

Here, we are computing G(p) (as in lecture) with p = 1/2, so G_1, G_2 have m/2 edges, s-t max-flow v/2 and min-cut c/2 in expectation. Also, $\epsilon = \tilde{O}(c^{-1/2})$, so w.h.p. the s-t max-flow in each graph is at least $(1 - \tilde{O}(c^{-1/2}))v/2$. It follows that w.h.p. F has value $v - \tilde{O}(v/\sqrt{c})$, so augmenting paths runs for $\tilde{O}(v/\sqrt{c})$ iterations, taking $\tilde{O}(mv/\sqrt{c})$ time. The recursion is then

$$T(m, v, c) = T(m/2, v/2, c/2) + O(mv/\sqrt{c}),$$

which solves to $\tilde{O}(mv/\sqrt{c})$. As in lecture, this is a probabilistic recurrence, so we need to analyze the recursion tree (as in DAUG) to show that this is in fact the running time.

- 2. (a) Let a, b and c be three non-collinear points. Let ℓ_{ab} and ℓ_{bc} be the perpendicular bisectors of segments \overline{ab} and \overline{bc} , respectively. Since the points are not collinear, ℓ_{ab} and ℓ_{bc} intersect at a unique point p. This is the only point equidistant to a, b and c. Therefore p is the center of the unique circle C_p containing a, b, c on its boundary. Computing the perpendicular bisectors takes constant time (midpoint, slope); finding the intersection takes constant time.
 - (b) **Lemma:** It is not possible to translate O(H) without excluding some point of H. *Proof.* Suppose the claim is false; then there exists a direction \mathbf{v} and $\epsilon > 0$ such that for all $t \in [0, \epsilon], S \subset O(H)$ when O(H) is translated by $t\mathbf{v}$. For $p \in H$, let $d_p(t')$ be the distance from p to O(H) when t = t'. If $d_p(t_0) = 0$ then for some $t_p > 0, d_p(t_0 + t') > 0$ for $t' \in (0, t_p)$ (a point cannot stay on the boundary as the circle is translated). Therefore there exists a $\delta \in [0, \epsilon]$ such that $d_p(\delta) > 0$ for all $p \in H$. But this implies the circle at $t = \delta$ can be contracted to give a smaller circle containing H, a contradiction.

Let $\mathcal{B}(H)$ be the input points on the boundary of O(H). By the setup, $|\mathcal{B}(H)| \leq 3$. If $|\mathcal{B}(H)| < 2$ then O(H) can be translated in a way contradicting the lemma. If $|\mathcal{B}(H)| = 2$ then these boundary points must be endpoints of a diameter. Therefore there are $\binom{n}{2} + \binom{n}{3}$ possibilities for B(H), representing $\mathcal{B}(H) = 2, 3$, respectively. Each possibility defines a unique circle: for $|\mathcal{B}(H)| = 2$, the center is at their midpoint; for three points, refer to part a. Therefore there are $O(n^3)$ circles to consider, each of which takes O(1) time to define by part a. Testing if all input points are contained in a circle takes O(n) time: measure the distance from each input point to the center and check if this distance is less than the radius. Therefore we can find O(H) in $O(n^4)$ time.

- (c) Suppose $O(H) \neq O(B(H))$. Then O(B(H)) excludes a point of B(H) on its boundary, so there are two basis points defining a diameter of O(B(H)). Therefore the arc of O(H) defined by the three basis points is smaller than 180 degrees. Note that O(B(H)) and O(H) have distinct centers $c_{B(H)}, c_H$ respectively, since $c_{B(H)}$ is not equidistant to all points of B(H). No other points are on the boundary of O(H), so c_H can be translated toward $c_{B(H)}$ by some $\epsilon > 0$ while keeping Hwithin O(H), since translating toward $c_{B(H)}$ decreases distances from c_H to the basis points. This violates the lemma from 2b, a contradiction. Therefore $O(H) \neq O(B(H))$.
- (d) Let $S' = S \cup \{p\}$. If p is not contained in O(S) then by part c, $O(S) \neq O(B(S'))$. By the contrapositive of part c, $S' \subset O(B(S'))$. Suppose $B(S') \subset S$; then $O(B(S')) \leq O(S)$ (in size). Since $S \subset S' \subset O(B(S'))$, $O(S) \leq O(B(S'))$ (in size). Therefore O(B(S')) and O(S) have the same size. Since $O(S) \neq O(B(S'))$ the Lemma from 2b is violated, a contradiction. Therefore the assumption is incorrect, and $p \in B(S')$, so p is on the boundary of O(S').
- (e) Let $C_H = \{B(T) : T \subseteq H\}$. For each $x \in C_H$, let v_x be the number of points of H outside O(x)and let the indicator i_x be 1 if x is the basis of R and 0 otherwise. Let V be the number of points of H outside of O(R). Then $E[|V|] = E[\sum_{x \in C_H} i_x v_x] = \sum_{x \in C_H} v_x E[i_x]$. Now, $E[i_x]$ is the probability that x is the basis of R. By 2c, x is the basis of R iff all points of R are contained in O(x). There are $\binom{n}{r}$ possible R. For x to be the basis, we must choose r - |x| points from the $n - |x| - v_x$, since x has already been included and we cannot choose anything outside of O(x). Therefore $E[i_x] = \binom{n - v_x - |x|}{r - |x|} / \binom{n}{r}$. The analysis from lecture is identical here, so

$$E[|V|] \le \frac{|x|(n-r+1)}{r-|x|} \le \frac{3(n-r+1)}{r-2}.$$

- (f) Now define $C_H = \{B(S \cap T) : T \subseteq H\}$. Let m = |H S|. For each $x \in C_H$, let v_x be the number of points of H outside $O(x \cap S)$ and let the indicator i_x be 1 if x is the basis of R and 0 otherwise. Let V be the number of points of H outside of $O(R \cap S)$. The bound for E[|V|] is the same as above, and follows nearly identically as above, replacing n with m, except we must define $q_x = |x S|$. Then we must choose $r q_x$ points from the $m q_x v_x$ (for the same reason as above).
- (g) The solution is nearly identical to SampLP. Call the algorithm SampC. Keep an active subset $S \subseteq H$, initialized to \emptyset . Fix an arbitrary constant c. If n < c run the algorithm from 2b. Otherwise, pick a random $R \subseteq H S$ of size at most $3\sqrt{n}$ and recursively evaluate $x \leftarrow SampC(R \cup S)$. Compute the set V of points of H outside of $O(R \cup S)$. If $|V| \leq 2\sqrt{n}$, add V to S. If |V| = 0, return x.

The algorithm is correct: a basis x for H is found iff no points of H are outside O(x). Let T(n) be the maximum expected running time when |H| = n. Then $T(n) \leq 6T(9\sqrt{n}) + O(n)$: since a basis element must be in V (by 2d), and by Markov's Inequality $\Pr[|V| \leq 2\sqrt{n}] \leq 1/2$, SampC is called recursively at most 6 times. Now S is initially empty, and at most $2\sqrt{n}$ points are added with each successful (bounded |V|) iteration, so the subproblems have size at most $6\sqrt{n}$. It takes constant time to construct O(x) from x, and O(n) time to determine V. The recursion follows. Repeated substitution gives $T(n) = O(n) + O(\sqrt{n}) + \ldots + O(1) = \tilde{O}(n)$.