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Homework 10 Solutions

1. (a) Let the graph be G = (V, E) with |V = n. Construct a graph G(p) on V by including each e ∈ E 

with probability p = 12 log n/(c(�/2)2
|
). By max-flow/min-cut the s − t min-cut of G has value v. 

As in lecture, w.h.p. the s − t min-cut in G(p) has value at most (1 + 2 · (�/2))v = (1 + �)v in 
G.	 Such a cut is saturated by a s − t max-flow, which can be found using the augmenting path

algorithm on G(p).

Constructing G(p) takes O(m) time. From lecture, w.h.p. G(p) has at most (1 + �)pm edges and

has min-cut at most (1 + �)pv, so augmenting paths runs for at most (1 + �)pv iterations (by max-

flow/min-cut). The expected number of iterations is constant (since we have w.h.p. statement),

so for constant � the expected running time is


O(m) + O(pm · pv) = O(m + mv log2 n/c2) = Õ(m + mv/c2). 

(b) For the p above, construct 1/p graphs on V by independently and randomly placing each edge in 
one of the graphs. Note that each graph is a sampled graph, so as in lecture, w.h.p. the s − t 
min-cut in each graph is at least (1 − �)pv. For each graph, run the augmenting path algorithm 
and return a s − t max-flow. Output the union F of these flows. 
From lecture, the probability that a sampled graph does not have s − t min-cut at least (1 − �)v is 
at most O(n−2). By the union bound, the probability that one of the 1/p sampled graphs “fails” is 
at most 1/(pn2) = O(1/n); therefore w.h.p. all of the graphs has a s − t min-cut at least (1 − �)pv. 
Since the graphs are edge disjoint, the union of their flows has value equal to their sum; therefore 
w.h.p. F has value 1 · (1 − �)pv = (1 − �)v. p 

˜As above, augmenting paths takes O(mv/c2) for each sampled graph. Since we run it on 1/p
˜ O(c) · O(mv/c2) = ˜sampled graphs, the expected running time is 1 O(mv/c2) = ˜ ˜ O(mv/c). p · 

(c) The algorithm runs as follows. Construct graphs G1, G2 on V by placing each edge independently 
and randomly in G1 or G2. Apply the algorithm recursively on G1 and G2. Take the union F of 
the resulting flows and run augmenting paths from F to complete the max-flow (so it is always 
correct). As a base case we can take the case where s − t max-flow is 0. 
Here, we are computing G(p) (as in lecture) with p = 1/2, so G1, G2 have m/2 edges, s−t max-flow 

˜v/2 and min-cut c/2 in expectation. Also, � = O(c−1/2), so w.h.p. the s − t max-flow in each graph 
is at least (1 − ˜ O(v/

√
c), so augmenting paths O(c−1/2))v/2. It follows that w.h.p. F has value v − ˜


runs for ˜ O(mv/
√

c) time. The recursion is then
O(v/
√

c) iterations, taking ˜

T (m, v, c) = T (m/2, v/2, c/2) + Õ(mv/
√

c), 

which solves to Õ(mv/
√

c). As in lecture, this is a probabilistic recurrence, so we need to analyze 
the recursion tree (as in DAUG) to show that this is in fact the running time. 

2. (a) Let	 a, b and c be three non-collinear points. Let �ab and �bc be the perpendicular bisectors of 
segments ab and bc, respectively. Since the points are not collinear, �ab and �bc intersect at a 
unique point p. This is the only point equidistant to a, b and c. Therefore p is the center of the 
unique circle Cp containing a, b, c on its boundary. Computing the perpendicular bisectors takes 
constant time (midpoint, slope); finding the intersection takes constant time. 

(b)	 Lemma: It is not possible to translate O(H) without excluding some point of H. 
Proof. Suppose the claim is false; then there exists a direction v and � > 0 such that for all 
t ∈ [0, �], S ⊂ O(H) when O(H) is translated by tv. For p ∈ H, let dp(t�) be the distance from p 
to O(H) when t = t�. If dp(t0) = 0 then for some tp > 0, dp(t0 + t�) > 0 for t� ∈ (0, tp) (a point 
cannot stay on the boundary as the circle is translated). Therefore there exists a δ ∈ [0, �] such 
that dp(δ) > 0 for all p ∈ H. But this implies the circle at t = δ can be contracted to give a smaller 
circle containing H, a contradiction. 
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Let B(H) be the input points on the boundary of O(H). By the setup, |B(H) ≤ 3. If |B(H) < 2| |
then O(H) can be translated in a way contradicting the lemma. If |B(H) = 2 then these boundary 

n npoints must be endpoints of a diameter. Therefore there are 2 + 
�| 

possibilities for B(H),3 
representing B(H) = 2, 3, respectively. Each possibility defines a unique circle: for |B(H) = 2,|
the center is at their midpoint; for three points, refer to part a. Therefore there are O(n3) circles 
to consider, each of which takes O(1) time to define by part a. Testing if all input points are 
contained in a circle takes O(n) time: measure the distance from each input point to the center 
and check if this distance is less than the radius. Therefore we can find O(H) in O(n4) time. 

(c) Suppose O(H) =� O(B(H)). Then O(B(H)) excludes a point of B(H) on its boundary, so there 
are two basis points defining a diameter of O(B(H)). Therefore the arc of O(H) defined by the 
three basis points is smaller than 180 degrees. Note that O(B(H)) and O(H) have distinct centers 
cB(H), cH respectively, since cB(H) is not equidistant to all points of B(H). No other points are 
on the boundary of O(H), so cH can be translated toward cB(H) by some � > 0 while keeping H 
within O(H), since translating toward cB(H) decreases distances from cH to the basis points. This 
violates the lemma from 2b, a contradiction. Therefore O(H) =� O(B(H)). 

(d) Let	 S� = S ∪ {p}. If p is not contained in O(S) then by part c, O(S) =� O(B(S�)). By the 
contrapositive of part c, S� ⊂ O(B(S�)). Suppose B(S�) ⊂ S; then O(B(S�)) ≤ O(S) (in size). 
Since S ⊂ S� ⊂ O(B(S�)), O(S) ≤ O(B(S�)) (in size). Therefore O(B(S�)) and O(S) have the 
same size. Since O(S) =� O(B(S�)) the Lemma from 2b is violated, a contradiction. Therefore the 
assumption is incorrect, and p ∈ B(S�), so p is on the boundary of O(S�). 

(e) Let CH = {B(T ) : T ⊆ H}. For each x ∈ CH , let vx be the number of points of H outside O(x) 
and let the indicator ix be 1 if x is the basis of R and 0 otherwise. Let V be the number of 
points of H outside of O(R). Then E[|V ] = E[ ixvx] = vxE[ix]. Now, E[ix] is the | x∈CH x∈CH 

probability that x is the basis of R. By 2c, x is the basis of R iff all points of R are contained in 
nO(x). There are r possible R. For x to be the basis, we must choose r − x points from the | |

x − vx, since x has already been included and we cannot choose anything outside of O(x).n − | | � � � � 
nTherefore E[ix] = n−vx −|x| / r . The analysis from lecture is identical here, so 

r−|x| 

x (n− r + 1) 3(n− r + 1) 
.E[|V |] ≤ | |

r − |x|
≤ 

r − 2 

(f) Now define CH = {B(S∩ T ) : T ⊆ H}. Let m = H− S . For each x ∈ CH , let vx be the number of |
points of H outside O(x∩ S) and let the indicator 

|
ix be 1 if x is the basis of R and 0 otherwise. Let 

V be the number of points of H outside of O(R ∩ S).The bound for E[ V ] is the same as above, | |
and follows nearly identically as above, replacing n with m, except we must define qx = x − S . 
Then we must choose r − qx points from the m− qx − vx (for the same reason as above). 

| |

(g) The solution is nearly identical to SampLP.	 Call the algorithm SampC. Keep an active subset 
S ⊆ H, initialized to ∅. Fix an arbitrary constant c. If n < c run the algorithm from 2b. Otherwise, 
pick a random R ⊆ H − S of size at most 3

√
n and recursively evaluate x ← SampC(R ∪ S). 

Compute the set V of points of H outside of O(R ∪ S). If V ≤ 2
√

n, add V to S. If V = 0,| |	 | |
return x.

The algorithm is correct: a basis x for H is found iff no points of H are outside O(x). Let T (n)

be the maximum expected running time when |H = n. Then T (n) ≤ 6T (9

√
n) + O(n): since a
|

basis element must be in V (by 2d), and by Markov’s Inequality Pr[|V ≤ 2
√

n] ≤ 1/2, SampC is |
called recursively at most 6 times. Now S is initially empty, and at most 2

√
n points are added 

with each successful (bounded |V ) iteration, so the subproblems have size at most 6
√

n. It takes |
constant time to construct O(x) from x, and O(n) time to determine V . The recursion follows. 
Repeated substitution gives T (n) = O(n) + O(

√
n) + . . . + O(1) = Õ(n). 
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