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Today’s plan

• Partially synchronous (timed) distributed systems
• Modeling timed systems
• Proof methods
• Mutual exclusion in timed systems
• Consensus in timed systems
• Clock synchronization
• Reading:                                  

– Chapters 23, 24, 25
– [Attiya, Welch], Section 6.3, Chapter 13



Partially synchronous               
system models

• We’ve studied distributed algorithms in synchronous and 
asynchronous distributed models.

• Now, intermediate, partially synchronous models.
– Involve some knowledge of time, but not synchronized rounds:

• Bounds on relative speed of processes, 
• Upper and lower bounds for message delivery, 
• Local clocks, proceeding at approximately-predictable rates.

• Useful for studying:
– Distributed algorithms whose behavior depends on time.
– Practical communication protocols.
– (Newer)  Mobile networks, embedded systems, robot control,…

• Needs new models, new proof methods.
• Leads to new distributed algorithms, impossibility results.



Modeling Timed Systems



Modeling timed systems
MMT automata [Merritt, Modugno, 
Tuttle]

– Simple, special-cased timed model
– Immediate extension of I/O automata

GTA, more general timed automata
Timed I/O Automata

– Still more general
– [Kaynar, Lynch, Segala, Vaandrager]

monograph
– Mathematical foundation for Tempo.
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MMT Automata
• Definition: An MMT automaton is an I/O automaton with 

finitely many tasks, plus a boundmap (lower, upper), where:
– lower maps each task T to a lower bound lower(T), 0 ≤ lower(T) < ∞

(can be 0, cannot be infinite),
– upper maps each task T to an upper bound upper(T), 0 < upper(T) ≤

∞ (cannot be 0, can be infinite),
– For every T, lower(T) ≤ upper(T).

• Timed executions:
– Like ordinary executions, but with times attached to events.
– α = s0, (π1, t1), s1, (π2, t2), s2,…
– Subject to the upper and lower bounds.

• Task T can’t be continuously enabled for more than time upper(T) 
without an action of T occurring.

• If an action of T occurs, then T must have been continuously enabled for 
time at least lower(T).

– Restricts the set of executions (unlike having just upper bounds):
– No fairness anymore, just time bounds.



MMT Automata, cont’d
• Timed traces:

– Suppress states and internal actions.
– Keep info about external actions and their times of occurrence.

• Admissible timed executions:
– Infinite timed executions with times approaching ∞, or
– Finite timed executions such that upper(T) =  ∞ for every task 

enabled in the final state.
• Rules out:

– Infinitely many actions in finite time (“Zeno behavior”).
– Stopping when some tasks still have work to do and upper bounds 

by which they should do it.

• Simple model, not very general, but good enough to 
describe some interesting examples:



Example:  Timed FIFO channel

• Consider our usual FIFO channel automaton.
– State: queue
– Actions:

• Inputs:  send(m), m in M
• Outputs:  receive(m), m in M

– Tasks: receive = { receive(m) : m in M }
• Boundmap:

– Associate lower bound 0, upper bound d, with the 
receive task.

• Guarantees delivery of oldest message in channel 
(head of queue), within time d.



Composition of MMT automata
• Compose MMT automata by 

– Composing the underlying I/O automata,
– Combining all the boundmaps.
– Composed automaton satisfies all timing constraints, of all 

components.
• Satisfies pasting, projection, as before:

– Project timed execution (or timed trace) of composition to get timed 
executions (timed traces) of components.

– Paste timed executions (or timed traces) that match up at 
boundaries to obtained timed executions (timed traces) of the 
composition.

• Also, a hiding operation, which makes some output actions 
internal.



Example:  Timeout system

• P1: Sender process
– Sends “alive” messages at least every time l, unless it has failed.
– Express using one send task, bounds [0,l].

• P2: Timeout process
– Decrements a count from k; if reaches 0 without a message arriving, output 

timeout.
– Express with 2 tasks, decrement with bounds [l1, l2], and timeout with 

bounds [0,l].
– Need non-zero lower bound for decrement, so that steps can be used to 

measure elapsed time.
• Compose P1, P2, and timed channel with bound d.
• Guarantees (assuming that k l1 > l + d):

– If P2 times out P1 then P1 has in fact failed.
• Even if P2 takes steps as fast as possible, enough time has passed when it

does a timeout.
– If P1 fails then P2 times out P1, and does so by time k l2 + l.

• P2 could actually take steps slowly.

P1 P2
Timed channel



Example:  Two-task race
• One automaton, two tasks:

– Main = { increment, decrement, report }
• Bounds [ l1, l2 ].

– Interrupt = { set }
• Bounds [ 0,l ].

• Increment count as long as flag = false, then decrement.
• When count returns to 0, output report.
• Set action sets flag true.
• Q: What is a good upper bound on the latest time at which 

a report may occur?
• l + l2 + ( l2 / l1 ) l
• Obtained by incrementing as fast as possible, then 

decrementing as slowly as possible.



General Timed Automata
• MMT is simple, but can’t express everything we 

might want:
– Example:  Perform actions “one”, then “two”, in order, so 

that “one” occurs at an arbitrary time in [0,1] and “two”
occurs at time exactly 1.

• GTAs:  
– More general, expressive.
– No tasks and bounds.
– Instead, explicit time-passage actions υ(t), in addition to 

inputs, outputs, internal actions.
– Time-passage steps (s, υ(t), s’), between ordinary 

discrete steps.



Example:  Timed FIFO Channel
• Delivers oldest message within time d
• States:

queue
now, a real, initially 0
last, a real or ∞, initially ∞

• Transitions:
send(m)

Effect:  
add m to queue
if |queue| = 1 then last := now + d

receive(m)
Precondition:  

m = head(queue)
Effect:

remove head of queue
if queue is nonempty then last := now + d else last := ∞

υ(t)
Precondition:  

now + t  ≤ last
Effect:

now := now + t 

Time-valued variables



Another Timed FIFO Channel
• Delivers every message within time d
• States:

queue, FIFO queue of (message, real) pairs
now, a real, initially 0

• Transitions:
send(m)

Effect:  
add (m, now + d) to queue

receive(m)
Precondition:  

(m,t) = head(queue), for some t
Effect:

remove head of queue
υ(t)

Precondition:  
now + t  ≤ t′, for every (m, t′) in queue

Effect:
now := now + t 



Transforming MMTAs to GTAs
• Program the timing constraints explicitly.
• Add state components:

– now, initially 0
– For each task T, add time-valued variables:

• first(T), initially lower(T) if T is enabled in initial state, else 0.
• last(T), initially upper(T) if T is enabled in initial state, else ∞.

• Manipulate the first and last values to express the MMT 
upper and lower bound requirements, e.g.:
– Don’t perform any task T if now < first(T).
– Don’t let time pass beyond any last() value.
– When task T becomes enabled, set first(T) to lower(T) and last(T)

to upper(T).
– When task T performs a step and is again enabled, set first(T) to 

lower(T) and last(T) to upper(T).
– When task T becomes disabled, set first(T) to 0 and last(T) to ∞.



Two-task race
• New state components:

now, initially 0
first(Main), initially l1
last(Main), initially l2
last(Interrupt), initially l

• Transitions:
increment:

Precondition:
flag = false
now ≥ first(Main) 

Effect:
count := count + 1
first(Main) := now + l1
last(Main) := now + l2

decrement:
Precondition:

flag = true
count > 0
now ≥ first(Main) 

Effect:
count := count - 1
first(Main) := now + l1
last(Main) := now + l2

report:
• Precondition:

flag = true
count = 0
reported = false
now ≥ first(Main) 

• Effect:
reported := true
first(Main) := 0
last(Main) := ∞



Two-task race

set:
Precondition:

flag = false
Effect:

flag := true
last(Interrupt) := ∞

υ(t):
Precondition:

now + t ≤ last(Main)
now + t ≤ last(Interrupt)

Effect:
now := now + t



More on GTAs

• Composition operation
– Identify external actions, as usual.
– Synchronize time-passage steps globally.
– Pasting and projection theorems.

• Hiding operation
• Levels of abstraction, simulation relations



Timed I/O Automata (TIOAs)

• Extension of GTAs in which time-passage steps 
are replaced by trajectories, which describe state 
evolution over time intervals.
– Formally, mappings from time intervals to states.
– Allows description of interesting state evolution, such 

as:
• Clocks that evolve at approximately-known rates.
• Motion of vehicles, aircraft, robots, in controlled systems.

• Composition, hiding, abstraction.



Proof methods for GTAs and TIOAs.

• Like those for untimed automata.
• Compositional methods.
• Invariants, simulation relations.

– They work for timed systems too.
– Now they generally involve time-valued state 

components as well as “ordinary” state 
components.

– Still provable using induction, on number of 
discrete steps + trajectories.



Example:  Two-task race
• Invariant 1: count ≤ ⎣ now / l1⎦.

– count can’t increase too much in limited time.
– Largest count results if each increment takes smallest time, l1.

• Prove by induction on number of discrete + time-passage 
steps?  Not quite:
– Property is not preserved by increment steps, which increase count 

but leave now unchanged.
• So we need another (stronger) invariant.
• Q: What else changes in an increment step?

– Before the step, first(Main) ≤ now; afterwards, first(Main) = now + l1.
– So first(Main) should appear in the stronger invariant.

• Invariant 2: If not reported then count ≤ ⎣ first(Main) / l1 - 1⎦.
• Use Invariant 2 to prove Invariant 1.



Two-task race
• Invariant 2:  If not reported then 

count ≤ ⎣ first(Main) / l1 - 1⎦
• Proof:

– By induction.
– Base: Initially, LHS = RHS = 0.
– Inductive step:  Dangerous steps either increase LHS 

(increment) or decrease RHS (report).
• Time-passage steps:  Don’t change anything.
• report: Can’t cause a problem because then reported = true.
• increment:

– count increases by 1
– first(Main) increases by at least l1:   Before the step, first(Main) ≤

now, and after the step, first(Main) = now + l1.
– So the inequality is preserved.



Modeling timed systems (summary)

• MMT automata [Merritt, Modugno, Tuttle]
– Simple, special-cased timed model
– Immediate extension of I/O automata
– Add upper and lower bounds for tasks.

• GTA, more general timed automata
– Explicit time-passage steps

• Timed I/O Automata
– Still more general
– Instead of time-passage steps, use trajectories, which describe 

evolution of state over time.
– [Kaynar, Lynch, Segala, Vaandrager] monograph
– Tempo support



Simulation relations
• These work for GTAs/TIOAs too.
• Imply inclusion of sets of timed traces of admissible 

executions.
• Simulation relation definition (from A to B):

– Every start state of A has a related start state of B.  (As before.)
– If s is a reachable state of A, u a related reachable state of B, and 

(s, π, s′) is a discrete step of A, then there is a timed execution 
fragment α of B starting with u, ending with some u′ of B that is 
related to s′, having the same timed trace as the given step, and 
containing no time-passage steps.

– If s is a reachable state of A, u a related reachable state of B, and 
(s, υ(t), s′) is a time-passage step of A, then there is a timed 
execution fragment of B starting with u, ending with some u′ of B 
that is related to s′, having the same timed trace as the given step, 
and whose total time-passage is t. 



Example:  Two-task race
• Prove upper bound of l + l2 + (l2 / l1) l on time until report.
• Intuition:  

– Within time l, set flag true.
– During time l, can increment count to at most approximately l / l1.
– Then it takes time at most (l / l1) l2 to decrement count to 0. 
– And at most another l2 to report.

• Could prove a simulation relation, to a trivial GTA that just 
outputs report, at any time ≤ l + l2 + (l2 / l1) l.

• Express this using time variables:
– now
– last(report), initially l + l2 + (l2 / l1) l.

• The simulation relation has an interesting form:  
inequalities involving the time variables:



Simulation relation
• s = state of race automaton, u = state of time bound spec automaton
• u.now = s.now, u.reported = s.reported
• u.last(report) ≥

s.last(Int) + (s.count + 2) l2 + (l2 / l1) (s.last(Int) – s.first(Main)), 
if s.flag = false and s.first(Main) ≤ s.last(Int),

s.last(Main) + (s.count) l2 , otherwise.

• Explanation:
– If flag = true, then time until report is the time until the next decrement, plus 

the time for the remaining decrements and the report.
– Same if flag = false but must become true before another increment.
– Otherwise, at least one more increment can occur before flag is set.  
– After set, it might take time (s.count + 1) l2 to count down and report.
– But current count could be increased some more:

• At most 1 + (last(Int) – first(Main)) / l1 times.
– Multiply by l2 to get extra time to decrement the additional count.



Timed Mutual Exclusion 
Algorithms



Timed mutual exclusion
• Model as before, but now the Us 

and the algorithm are MMT 
automata.

• Assume one task per process, with 
bounds [l1,l2],    0 < l1 ≤ l2 < ∞.

• Users:  Arbitrary tasks, boundmaps.

p1

p2

pn

x1

x2

A
U1

U2

Un

• Mutual exclusion problem:  guarantee well-formedness, 
mutual exclusion, and progress, in all admissible timed 
executions.

• No high-level fairness guarantees, for now.
• Now, algorithm’s correctness is allowed to depend on 

timing assumptions.



Fischer mutual exclusion algorithm

• Famous, “published” only in email from Fischer to Lamport.
• A toy algorithm, widely used as a benchmark for modeling 

and verification methods for timing-based systems.
• Uses a single read/write register, turn.
• Compare:   In asynchronous model, need n variables.

• Incorrect, asynchronous version (process i):
– Trying protocol:

• wait for turn = 0
• turn := i
• if turn = i, go critical; else go back to beginning

– Exit protocol:
• turn := 0



Incorrect execution
• To avoid this problem, add a 

timing constraint:
– Process i waits long enough 

between seti and checki so that no 
other process j that sees turn = 0 
before seti can set turn := j after 
checki.

– That is, interval from seti to checki 
is strictly longer than interval from 
testj to setj.

• Can ensure by counting steps:  
– Before checking, process i waits k 

steps, where k > l2 / l1.
– Shortest time from seti to checki is 

k l1, which is greater than the 
longest time l2 from testj to setj.

P1 P2

see turn = 0

see turn = 0

turn := 1

turn := 2

see turn = 1

see turn = 2

go critical

go critical



Fischer mutex algorithm

• Pre/effect code, p. 777.
• Not quite in the assumed model:

– That has just one task/process, with bounds [l1, l2].
– Here we use another task for the check, with bounds 

[a1, a2], where a1 = k l1, a2 = k l2, 

– This version is more like the ones used in most 
verification work.

• Proof?
– Easy to see the algorithm avoids the bad example, 

but how do we know it’s always correct?



Proof of mutex property
• Use invariants.
• One of the earliest examples of an assertional proof for 

timed models.
• Key intermediate assertion:

– If pci = check, turn = i, and pcj = set, then first(checki) > last(mainj).
– That is, if i is about to check turn and get a positive answer, and j is 

about to set turn, then the earliest time when i might check it is 
strictly after the latest time when j might set it.

– Rules out the bad interleaving.
• Can prove this by an easy induction.
• Use it to prove main assertion:

– If pci ∈{ leave-try, crit, reset }, then turn = i, and for every j, pcj ≠ set.
• Which immediately implies mutual exclusion.



Proof of progress
• Easy event-based argument:

– By contradiction:   Assume someone is in T, and no one is 
thereafter ever in C.

– Then eventually region changes stop, everyone is in either T or R, 
at least one process is in T.

– Eventually turn acquires a contender’s index, then stabilizes to 
some contender’s index, say i.

– Then i proceeds to C.
• Refine this argument to a time bound, for the time from 

when someone is in T until someone is in C:
– 2 a2 + 5 l2 = 2 k l2 + 5 l2
– Since k is approximately L = l2 / l1 (timing uncertainty ratio), this is

2 L l2 + O( l2 )
– Thus, timing uncertainty stretches the time complexity.



Stretching the time complexity
• Q: Why is the time complexity “stretched” by the timing 

uncertainty L = (l2/ l1), yielding an L l2 term?
• Process i must ensure that time t = l2 has elapsed, to know 

that another process has had enough time to perform a 
step.

• Process i determines this by counting its own steps.
• Must count at least t / l1 steps to be sure that time t has 

elapsed, even if i’s steps are fast (l1).
• But the steps could be slow (l2), so the total time could be 

as big as (t / l1) l2 = (l2 / l1) t = L t.
• Requires real time Lt for process in a system with timing 

uncertainty L to be sure that time t has elapsed.
• Similar stretching phenomenon arose in timeout example.



Lower bound on time
• Theorem: There is no timed mutex algorithm for 2 

processes with 1 shared variable, having an upper bound 
of L l2 on the time for someone to reach C.

• Proof:  
– Like the proof that 1 register is insufficient for 2-process 

asynchronous mutual exclusion.
– By contradiction; suppose such an algorithm exists.
– Consider admissible execution α in which process 1 runs alone, 

slowly (all steps take l2).
– By assumption, process 1 must enter C within time L l2.
– Must write to the register x before →C.
– Pause process 1 just before writing x for the first time.

p1 only
p1 covers x p1 enters C



Lower bound on time
• Proof, cont’d:

– Now run process 2, from where process 1 covers x.
– p2 sees initial state, so eventually →C.
– If p2 takes steps as slowly as possible (l2), must →C within time L l2.
– If we speed p2 up (shrink), p2 →C within time L l2 (l1 / l2) = L l1.
– So we can run process 2 all the way to C during the time p1 is 

paused, since l2 = L l1.
– Then as in asynchronous case, can resume p1, overwrites x, enters 

C, contradiction.

p1 only
p1 covers x p1 enters C

p2 only

p2 enters C



The Fischer algorithm is fragile
• Depends on timing assumptions, even for the main safety 

property, mutual exclusion.
• It would be nice if safety were independent of timing (e.g., 

like Paxos).
• Can modify Fischer so mutual exclusion holds in all 

asynchronous runs, for n processes, using 3 registers 
[Section 24.3].  

• But this fails to guarantee progress, even assuming timing 
eventually stabilizes (like Paxos).

• In fact, progress depends crucially on timing:
– If time bounds are violated, then algorithm can deadlock, making

future progress impossible.
• In fact, we have:



Another impossibility result!
• It’s impossible to guarantee n-process mutual exclusion in 

all asynchronous runs, progress if timing stabilizes, with < 
n registers:

• Theorem: There is no asynchronous read/write shared-
memory algorithm for n ≥ 2 processes that:
– Guarantees well-formedness and mutual exclusion when run 

asynchronously,
– Guarantees progress when run so that each process’ step bounds 

eventually are in the range [l1,l2], and
– Uses < n shared registers.

• !!!

• Proof: Similar to that of impossibility of asynchronous 
mutex for < n registers (tricky).



Timed Consensus Algorithms



Consensus in timed systems
• Network model:
• Process:

– MMT automaton, finitely many 
tasks.

– Task bounds [l1,l2], 0 < l1 ≤ l2 < ∞, 
L = l2 / l1

– Stopping failures only.
• Channels:  

– GTA or TIOA
– Reliable FIFO channels, upper 

bound of d for every message.
• Properties:  

– Agreement, 
– Validity (weak or strong), 
– Failure-free termination
– f-failure termination, wait-free 

termination

initi

decidei initj
decidej

Channels

• In general, we’re 
allowed to rely on time 
bounds for both safety + 
liveness.

• Q: Can we solve fault-
tolerant agreement? 
How many failures? 
How much time does it 
take?



Consensus in timed systems
• Assumptions:

– V = { 0, 1 }, 
– Completely connected graph, 
– l1, l2 << d (in fact, n l2 << d, L l2 << d).
– Every task always enabled.

• Results:
– Simple algorithm, for any number f of failures, strong 

validity, time bound ≈ f L d 
– Simple lower bound: (f+1) d.
– More sophisticated algorithm:  ≈ Ld + (2f+2) d 
– More sophisticated lower bound:  ≈ Ld + (f-1) d

• [Attiya, Dwork, Lynch, Stockmeyer]



Simple algorithm
• Implement a perfect failure detector, which times 

out failed processes.
– Process i sends periodic “alive” messages.
– Process i determines process j has failed if i doesn’t 

receive any messages from j for a large number of i’s 
steps (≈ (d + l2) / l1 steps).

– Time until detection at most ≈ L d + O(L l2).
– Ld is the time needed for a timeout.

• Use the failure detector to simulate a round-based 
synchronous consensus algorithm for the required 
f+1 rounds. 

• Time for consensus at most ≈ f L d + O(f L l2).



Simple lower bound

• Upper bound (so far):  ≈ f L d + O(f L l2).
• Lower bound (f+1)d

– Follows from (f+1)-round lower bound for 
synchronous model, via a model transformation.

• Note the role of the timing uncertainty L:
– Appears in the upper bound:  f Ld, time for f 

successive timeouts.
– But doesn’t appear in the lower bound.

• Q: How does the real cost depend on L?



Better algorithm

• Time bound: Ld + (2f+2)d + O(f l2 + L l2)
– Time for just one timeout!
– Tricky algorithm, LTTR.

• Uses a series of rounds, each involving an attempt to decide.
• At even-numbered rounds, try to decide 0; at odd-numbered 

rounds, try to decide 1.
• Each failure can cause an attempt to fail, move on to another 

round.
• Successful round takes time at most ≈ Ld.
• Unsuccessful round k takes time at most ≈ (fk + 1) d, where fk is 

the number of processes that fail at round k.



Better lower bound

• Upper bound:  ≈ Ld + (2f+2)d 
• Lower bound:  Ld + (f-1) d
• Interesting proof---uses practically every 

lower bound technique we’ve seen:  
– Chain argument, as in Chapter 6.
– Bivalence argument, as in Chapter 12.
– Stretching and shrinking argument for timed 

executions, as in Chapter 24.
• LTTR



[Dwork, Lynch, Stockmeyer 88]
consensus results

• 2007 Dijkstra prize
• Weaken the time bound assumptions so that they hold 

eventually, from some point on, not necessarily always.
• Assume n > 2f (unsolvable otherwise).
• Guarantees agreement, validity, f-failure termination.

– Thus, safety properties (agreement and validity) don’t depend on 
timing.

– Termination does---but in a nice way:  guaranteed to terminate if 
time bound assumptions hold from any point on.

– Similar to problem solved by Paxos.
• Algorithm:

– Similar to Paxos (earlier), but allows less concurrency.



[DLS] algorithm
• Rotating coordinator as in 3-phase commit, pre-allocated “stages”.
• In each stage, one pre-determined coordinator takes charge, tries to 

coordinate agreement using a four-round protocol:
1. Everyone sends “acceptable” values to coordinator; if coordinator receives 

“enough”, it chooses one to propose.
2. Coordinator sends proposed value to everyone; anyone who receives it 

“locks” the value.
3. Everyone who received a proposal in round 2 sends an ack to the 

coordinator; if coordinator receives “enough” acks, decides on the 
proposed value.

4. Everyone exchanges lock info.
• “Acceptable” means opposite value isn’t locked.

• Implementing synchronous rounds:
– Use the time assumptions.
– Emulation may be unreliable until timing stabilizes.
– That translates into possible lost messages, in earlier rounds.
– Algorithm can tolerate lost messages before stabilization.



Mutual exclusion vs. consensus
• Mutual exclusion with < n shared registers:

– Asynchronous systems:  
• Impossible

– Timed systems:
• Solvable, time upper bound O( L l2 ), matching lower bound

– Systems where timing assumptions hold from some point on:
• Impossible to guarantee both safety (mutual exclusion) and liveness 

(progress).
• Consensus with f failures, f ≥ 1:

– Asynchronous systems:
• Impossible

– Timed systems:
• Solvable, time upper bound L d + O(d), matching lower bound.

– Systems where timing assumptions hold from some point on:
• Can guarantee both safety (agreement and validity) and liveness (f-

failure termination), for n > 2f.



Clock Synchronization 
Algorithms



Clock synchronization
• Network model:
• Process:

– TIOA
– Includes a physical clock component 

that progresses at some (possibly 
varying) rate in the range [1 - ρ, 1+ ρ].

– Not under the process’ control.
• Channels:  

– GTA or TIOA
– Reliable FIFO channels, message delay 

bounds in interval [d1, d2].
• Properties:  

– Each node, at each time, computes the 
value of a logical clock

– Agreement:  Logical clocks should 
become, and remain, within a small 
constant ε of each other.

– Validity:  Logical clock values should be 
approximately within the range of the 
physical clock values.

Channels

• Issues:
– Timing uncertainty
– Tolerating failures
– Scalability
– Accommodating 

external clock inputs



Timing uncertainty
• E.g., 2 processes:

– Messages from p1 to p2 might always take the 
minimum time d1.

– Messages from p2 to p1 might always take the 
maximum time d2.

– Or vice versa.
– Either way, the logical clocks are supposed to be 

within ε of each other.
– Implies that ε ≥ (d2 – d1) / 2

• Can achieve ε ≈ (d2 – d1) / 2, if clock drift 
rate is very small and there are no failures.

• For n processes in fully connected graph, 
can achieve ε ≈ (d2 – d1) (1 – 1/n), and that’s 
provably optimal.

p1 p2

d1

d2

p1 p2

d2

d1



Accommodating failures
• Several published algorithms for n > 3f processes 

to establish and maintain clock synchronization, in 
the presence of up to f Byzantine faulty processes.
– [Lamport], [Dolev, Strong], [Lundelius, Lynch],…
– Some algorithms perform fault-tolerant averaging.
– Some wait until f+1 processes claim a time has been 

reached before jumping to that time.
– Etc.

• Lower bound:  n > 3f is necessary.
– Original proof:  [Dolev, Strong]
– Cuter proof:  [Fischer, Lynch, Merritt]

• By contradiction:  Assume (e.g.) a 3-process clock synch 
algorithm that tolerates 1 Byzantine faulty process.

• Form a large ring, from many copies of the algorithm:



Accommodating failures
• Lower bound proof:  n > 3f necessary

– By contradiction:  Assume a 3-process clock synch algorithm that 
tolerates 1 Byzantine faulty process.

– Form a large ring, from many copies of the algorithm:

– Let the physical clocks drift progressively, as we move around the 
ring, fastest and slowest at opposite sides of the ring.

– Any consecutive pair’s logical clocks must remain within ε of each 
other, by agreement, and must remain approximately within the 
range of their physical clocks, by validity.

– Can’t satisfy this everywhere in the ring.
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Scalability
• Large, not-fully-connected network.
• E.g., a line:

• Can’t hope to synchronize distant nodes too closely.
• Instead, try to achieve a gradient property, saying that 

neighbors’ clocks are always closely synchronized. 
• Impossibility result for gradient clock synch [Fan 04]:  Any 

clock synch algorithm in a line of length D has some 
reachable state in which the logical clocks of two neighbors 
are Ω( log D /  log log D) apart.

• Algorithms exist that achieve a constant gradient “most of 
the time”.

• And newer algorithms that achieve O(log D) all of the time.



External clock inputs

• Practical clock synch algorithms use reliable 
external clock sources:
– NTP time service in Internet
– GPS in mobile networks

• Nodes with reliable time info send it to other 
nodes. 

• Recipients may correct for communication delays
• Typically ignore failures.



Mobile Wireless Network 
Algorithms



Mobile networks
• Nodes moving in physical space, communicating using local broadcast.
• Mobile phones, hand-held computers;  robots, vehicles, airplanes
• Physical space:

– Generally 2-dimensional, sometimes 3
• Nodes:

– Have uids.
– May know the approximate real time, and their own approximate locations.
– May fail or be turned off, may restart.
– Don’t know a priori who else is participating, or who is nearby.

• Communication:
– Broadcast, received by nearby listening nodes.
– May be unreliable, subject to collisions/losses, or
– May be assumed reliable (relying on backoff mechanisms to mask losses).

• Motion:
– Usually unpredictable, subject to physical limitations, e.g. velocity bounds.
– May be controllable (robots).

• Q: What problems can/cannot be solved in such networks?



Some preliminary results
• Dynamic graph model

– Welch, Walter, Vaidya,…
– Algorithms for mutual exclusion, k-exclusion, message routing,…

• Wireless networks with collisions
– Algorithms / lower bounds for broadcast in the presence of 

collisions [Bar-Yehuda, Goldreich, Itai], [Kowalski, Pelc],…
– Algorithms / lower bounds for consensus [Newport, Gilbert, et al.]

• Rambo atomic memory algorithm
– [Gilbert, Lynch, Shvartsman]
– Reconfigurable Atomic Memory for Basic (read/write) Objects
– Implemented using a changing quorum system configuration.
– Paxos consensus used to change the configuration, runs in the 

background without interfering with ongoing reads/writes.
• Virtual Node abstraction layers for mobile networks

– Gilbert, Nolte, Brown, Newport,…



Some preliminary results

• Neighbor discovery, counting number of 
nodes, maintaining network structures,…

• Leave all this for another course.



VN Layers for mobile networks

• Add Virtual Nodes:  Simple state machines (TIOAs) located 
at fixed, known geographical locations (e.g., grid points).

• Mobile nodes in the vicinity emulate the VSNs, using a 
Replicated State Machine approach, with an elected leader 
managing communication.

• Virtual Nodes may fail, later recover in initial state.
• Program applications over the VSN layer.

– Geocast, location services, point-to-point communication, bcast.
– Data collection and dissemination.
– Motion coordination (robots, virtual traffic lights, virtual air-traffic 

controllers).

• Other work:  Neighbor discovery, counting number of 
nodes, maintaining network structures,…

• Leave all this for another course.



Next time…

• There is no next time!
• Have a very nice break!
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