6.852: Distributed Algorithms Fall, 2009

Class 25

Today's plan

- Partially synchronous (timed) distributed systems
- Modeling timed systems
- Proof methods
- Mutual exclusion in timed systems
- Consensus in timed systems
- Clock synchronization
- Reading:
 - Chapters 23, 24, 25
 - [Attiya, Welch], Section 6.3, Chapter 13

Partially synchronous system models

- We've studied distributed algorithms in synchronous and asynchronous distributed models.
- Now, intermediate, partially synchronous models.
 - Involve some knowledge of time, but not synchronized rounds:
 - Bounds on relative speed of processes,
 - Upper and lower bounds for message delivery,
 - Local clocks, proceeding at approximately-predictable rates.
- Useful for studying:
 - Distributed algorithms whose behavior depends on time.
 - Practical communication protocols.
 - (Newer) Mobile networks, embedded systems, robot control,...
- Needs new models, new proof methods.
- Leads to new distributed algorithms, impossibility results.

Modeling Timed Systems

Modeling timed systems

MMT automata [Merritt, Modugno, Tuttle]

- Simple, special-cased timed model
- Immediate extension of I/O automata
- GTA, more general timed automata

Timed I/O Automata

- Still more general
- [Kaynar, Lynch, Segala, Vaandrager] monograph
- Mathematical foundation for Tempo.

Textbook cover image removed due to copyright restrictions.

Kaynar, Dilsun, Nancy Lynch, Roberto Segala, and Frits Vaandrager. *The Theory of Timed I/O Automata (Synthesis Lectures on Distributed Computing Theory).* 2nd ed. San Rafael, CA: Morgan & Claypool, 2010. ISBN: 978-1608450022.

MMT Automata

- Definition: An MMT automaton is an I/O automaton with finitely many tasks, plus a boundmap (lower, upper), where:
 - lower maps each task T to a lower bound lower(T), 0 ≤ lower(T) < ∞ (can be 0, cannot be infinite),
 - upper maps each task T to an upper bound upper(T), 0 < upper(T) ≤ ∞ (cannot be 0, can be infinite),
 - For every T, $Iower(T) \leq upper(T)$.
- Timed executions:
 - Like ordinary executions, but with times attached to events.
 - $\alpha = s_0, (\pi_1, t_1), s_1, (\pi_2, t_2), s_2, \dots$
 - Subject to the upper and lower bounds.
 - Task T can't be continuously enabled for more than time upper(T) without an action of T occurring.
 - If an action of T occurs, then T must have been continuously enabled for time at least lower(T).
 - Restricts the set of executions (unlike having just upper bounds):
 - No fairness anymore, just time bounds.

MMT Automata, cont'd

• Timed traces:

- Suppress states and internal actions.
- Keep info about external actions and their times of occurrence.
- Admissible timed executions:
 - Infinite timed executions with times approaching ∞ , or
 - Finite timed executions such that $upper(T) = \infty$ for every task enabled in the final state.
- Rules out:
 - Infinitely many actions in finite time ("Zeno behavior").
 - Stopping when some tasks still have work to do and upper bounds by which they should do it.
- Simple model, not very general, but good enough to describe some interesting examples:

Example: Timed FIFO channel

- Consider our usual FIFO channel automaton.
 - State: queue
 - Actions:
 - Inputs: send(m), m in M
 - Outputs: receive(m), m in M
 - Tasks: receive = { receive(m) : m in M }
- Boundmap:
 - Associate lower bound 0, upper bound d, with the receive task.
- Guarantees delivery of oldest message in channel (head of queue), within time d.

Composition of MMT automata

- Compose MMT automata by
 - Composing the underlying I/O automata,
 - Combining all the boundmaps.
 - Composed automaton satisfies all timing constraints, of all components.
- Satisfies pasting, projection, as before:
 - Project timed execution (or timed trace) of composition to get timed executions (timed traces) of components.
 - Paste timed executions (or timed traces) that match up at boundaries to obtained timed executions (timed traces) of the composition.
- Also, a hiding operation, which makes some output actions internal.

Example: Timeout system

• P₁: Sender process

- Sends "alive" messages at least every time I, unless it has failed.
- Express using one send task, bounds [0,I].
- P₂: Timeout process
 - Decrements a count from k; if reaches 0 without a message arriving, output timeout.
 - Express with 2 tasks, decrement with bounds [I1, I2], and timeout with bounds [0,I].
 - Need non-zero lower bound for decrement, so that steps can be used to measure elapsed time.
- Compose P₁, P₂, and timed channel with bound d.
- Guarantees (assuming that $k I_1 > I + d$):
 - If P_2 times out P_1 then P_1 has in fact failed.
 - Even if P₂ takes steps as fast as possible, enough time has passed when it does a timeout.
 - If P_1 fails then P_2 times out P_1 , and does so by time k I_2 + I.
 - P₂ could actually take steps slowly.

Example: Two-task race

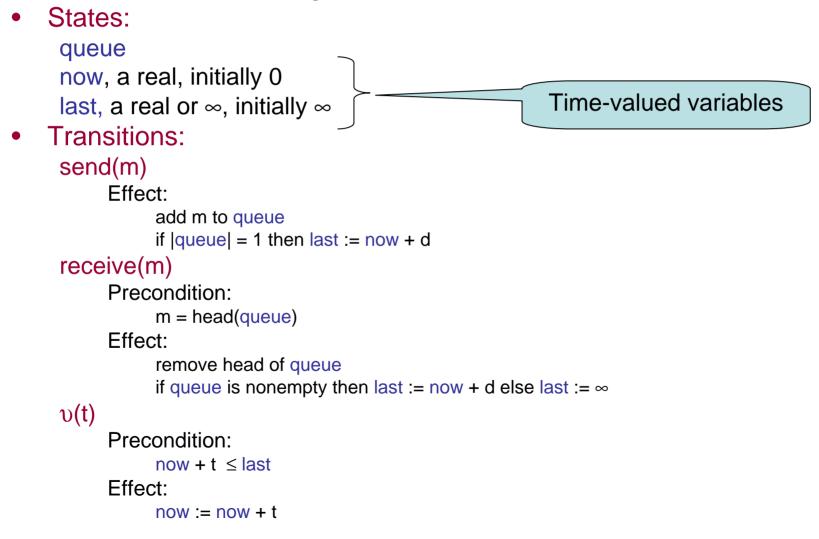
- One automaton, two tasks:
 - Main = { increment, decrement, report }
 - Bounds [I_1 , I_2].
 - Interrupt = { set }
 - Bounds [0,I].
- Increment count as long as flag = false, then decrement.
- When count returns to 0, output report.
- Set action sets flag true.
- Q: What is a good upper bound on the latest time at which a report may occur?
- $| + |_2 + (|_2 / |_1) |$
- Obtained by incrementing as fast as possible, then decrementing as slowly as possible.

General Timed Automata

- MMT is simple, but can't express everything we might want:
 - Example: Perform actions "one", then "two", in order, so that "one" occurs at an arbitrary time in [0,1] and "two" occurs at time exactly 1.
- GTAs:
 - More general, expressive.
 - No tasks and bounds.
 - Instead, explicit time-passage actions v(t), in addition to inputs, outputs, internal actions.
 - Time-passage steps (s, v(t), s'), between ordinary discrete steps.

Example: Timed FIFO Channel

• Delivers oldest message within time d



Another Timed FIFO Channel

- Delivers every message within time d
- States:

queue, FIFO queue of (message, real) pairs now, a real, initially 0

• Transitions:

send(m)
 Effect:
 add (m, now + d) to queue
receive(m)
 Precondition:
 (m,t) = head(queue), for some t
 Effect:
 remove head of queue
a)(t)

υ**(t)**

```
Precondition:
```

```
now + t \leq t', for every (m, t') in queue
```

Effect:

now := now + t

Transforming MMTAs to GTAs

- Program the timing constraints explicitly.
- Add state components:
 - now, initially 0
 - For each task T, add time-valued variables:
 - first(T), initially lower(T) if T is enabled in initial state, else 0.
 - last(T), initially upper(T) if T is enabled in initial state, else ∞ .
- Manipulate the first and last values to express the MMT upper and lower bound requirements, e.g.:
 - Don't perform any task T if now < first(T).
 - Don't let time pass beyond any last() value.
 - When task T becomes enabled, set first(T) to lower(T) and last(T) to upper(T).
 - When task T performs a step and is again enabled, set first(T) to lower(T) and last(T) to upper(T).
 - When task T becomes disabled, set first(T) to 0 and last(T) to ∞ .

Two-task race

- New state components: now, initially 0 first(Main), initially I₁ last(Main), initially I₂ last(Interrupt), initially I
- Transitions: increment: Precondition: flag = false now ≥ first(Main)
 Effect: count := count + 1 first(Main) := now + l₁ last(Main) := now + l₂

 $\begin{array}{l} \mbox{decrement:} \\ \mbox{Precondition:} \\ \mbox{flag} = true \\ \mbox{count} > 0 \\ \mbox{now} \ge first(Main) \\ \mbox{Effect:} \\ \mbox{count} := \mbox{count} - 1 \\ \mbox{first}(Main) := \mbox{now} + l_1 \\ \mbox{last}(Main) := \mbox{now} + l_2 \end{array}$

report:

- Precondition:

 flag = true
 count = 0
 reported = false
 now ≥ first(Main)
- Effect:

 reported := true
 first(Main) := 0
 last(Main) := ∞

Two-task race

set: Precondition: flag = false Effect: flag := true last(Interrupt) := ∞ υ(t): **Precondition:** now + t \leq last(Main) now + t \leq last(Interrupt) Effect: now := now + t

More on GTAs

- Composition operation
 - Identify external actions, as usual.
 - Synchronize time-passage steps globally.
 - Pasting and projection theorems.
- Hiding operation
- Levels of abstraction, simulation relations

Timed I/O Automata (TIOAs)

- Extension of GTAs in which time-passage steps are replaced by trajectories, which describe state evolution over time intervals.
 - Formally, mappings from time intervals to states.
 - Allows description of interesting state evolution, such as:
 - Clocks that evolve at approximately-known rates.
 - Motion of vehicles, aircraft, robots, in controlled systems.
- Composition, hiding, abstraction.

Proof methods for GTAs and TIOAs.

- Like those for untimed automata.
- Compositional methods.
- Invariants, simulation relations.
 - They work for timed systems too.
 - Now they generally involve time-valued state components as well as "ordinary" state components.
 - Still provable using induction, on number of discrete steps + trajectories.

Example: Two-task race

- Invariant 1: count $\leq \lfloor \text{now} / I_1 \rfloor$.
 - count can't increase too much in limited time.
 - Largest count results if each increment takes smallest time, I_1 .
- Prove by induction on number of discrete + time-passage steps? Not quite:
 - Property is not preserved by increment steps, which increase count but leave now unchanged.
- So we need another (stronger) invariant.
- Q: What else changes in an increment step?
 - Before the step, first(Main) \leq now; afterwards, first(Main) = now + I₁.
 - So first(Main) should appear in the stronger invariant.
- Invariant 2: If not reported then count $\leq \lfloor$ first(Main) / I₁ 1 \rfloor .
- Use Invariant 2 to prove Invariant 1.

Two-task race

- Invariant 2: If not reported then count $\leq \lfloor \text{first}(\text{Main}) / I_1 - 1 \rfloor$
- Proof:
 - By induction.
 - **Base**: Initially, LHS = RHS = 0.
 - Inductive step: Dangerous steps either increase LHS (increment) or decrease RHS (report).
 - Time-passage steps: Don't change anything.
 - report: Can't cause a problem because then reported = true.
 - increment:
 - count increases by 1
 - first(Main) increases by at least I_1 : Before the step, first(Main) \leq now, and after the step, first(Main) = now + I_1 .
 - So the inequality is preserved.

Modeling timed systems (summary)

- MMT automata [Merritt, Modugno, Tuttle]
 - Simple, special-cased timed model
 - Immediate extension of I/O automata
 - Add upper and lower bounds for tasks.
- GTA, more general timed automata
 - Explicit time-passage steps
- Timed I/O Automata
 - Still more general
 - Instead of time-passage steps, use trajectories, which describe evolution of state over time.
 - [Kaynar, Lynch, Segala, Vaandrager] monograph
 - Tempo support

Simulation relations

- These work for GTAs/TIOAs too.
- Imply inclusion of sets of timed traces of admissible executions.
- Simulation relation definition (from A to B):
 - Every start state of A has a related start state of B. (As before.)
 - If s is a reachable state of A, u a related reachable state of B, and (s, π, s') is a discrete step of A, then there is a timed execution fragment α of B starting with u, ending with some u' of B that is related to s', having the same timed trace as the given step, and containing no time-passage steps.
 - If s is a reachable state of A, u a related reachable state of B, and (s, v(t), s') is a time-passage step of A, then there is a timed execution fragment of B starting with u, ending with some u' of B that is related to s', having the same timed trace as the given step, and whose total time-passage is t.

Example: Two-task race

- Prove upper bound of $I + I_2 + (I_2 / I_1) I$ on time until report.
- Intuition:
 - Within time I, set flag true.
 - During time I, can increment count to at most approximately I / I_1 .
 - Then it takes time at most $(I / I_1) I_2$ to decrement count to 0.
 - And at most another I_2 to report.
- Could prove a simulation relation, to a trivial GTA that just outputs report, at any time $\leq I + I_2 + (I_2 / I_1) I$.
- Express this using time variables:
 - now
 - last(report), initially $I + I_2 + (I_2 / I_1) I$.
- The simulation relation has an interesting form: inequalities involving the time variables:

Simulation relation

- s = state of race automaton, u = state of time bound spec automaton
- u.now = s.now, u.reported = s.reported
- u.last(report) ≥

```
s.last(Int) + (s.count + 2) I_2 + (I_2 / I_1) (s.last(Int) - s.first(Main)),
```

```
if s.flag = false and s.first(Main) \leq s.last(Int),
```

s.last(Main) + (s.count) I_2 , otherwise.

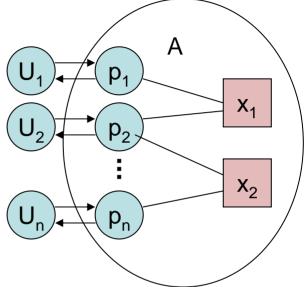
• Explanation:

- If flag = true, then time until report is the time until the next decrement, plus the time for the remaining decrements and the report.
- Same if flag = false but must become true before another increment.
- Otherwise, at least one more increment can occur before flag is set.
- After set, it might take time (s.count + 1) I_2 to count down and report.
- But current count could be increased some more:
 - At most 1 + (last(Int) first(Main)) / l₁ times.
- Multiply by I_2 to get extra time to decrement the additional count.

Timed Mutual Exclusion Algorithms

Timed mutual exclusion

- Model as before, but now the Us and the algorithm are MMT automata.
- Assume one task per process, with bounds $[I_1, I_2]$, $0 < I_1 \le I_2 < \infty$.
- Users: Arbitrary tasks, boundmaps.



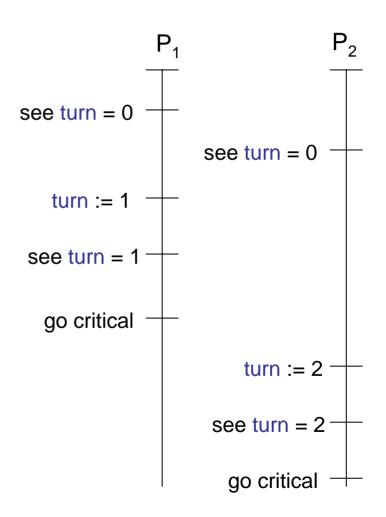
- Mutual exclusion problem: guarantee well-formedness, mutual exclusion, and progress, in all admissible timed executions.
- No high-level fairness guarantees, for now.
- Now, algorithm's correctness is allowed to depend on timing assumptions.

Fischer mutual exclusion algorithm

- Famous, "published" only in email from Fischer to Lamport.
- A toy algorithm, widely used as a benchmark for modeling and verification methods for timing-based systems.
- Uses a single read/write register, turn.
- Compare: In asynchronous model, need n variables.
- Incorrect, asynchronous version (process i):
 - Trying protocol:
 - wait for turn = 0
 - turn := i
 - if turn = i, go critical; else go back to beginning
 - Exit protocol:
 - turn := 0

Incorrect execution

- To avoid this problem, add a timing constraint:
 - Process i waits long enough between set_i and check_i so that no other process j that sees turn = 0 before set_i can set turn := j after check_i.
 - That is, interval from set_i to check_i is strictly longer than interval from test_i to set_i.
- Can ensure by counting steps:
 - Before checking, process i waits k steps, where $k > l_2 / l_1$.
 - Shortest time from set_i to check_i is k l₁, which is greater than the longest time l₂ from test_i to set_i.



Fischer mutex algorithm

- Pre/effect code, p. 777.
- Not quite in the assumed model:
 - That has just one task/process, with bounds $[I_1, I_2]$.
 - Here we use another task for the check, with bounds $[a_1, a_2]$, where $a_1 = k I_1, a_2 = k I_2$,
 - This version is more like the ones used in most verification work.
- Proof?
 - Easy to see the algorithm avoids the bad example, but how do we know it's always correct?

Proof of mutex property

- Use invariants.
- One of the earliest examples of an assertional proof for timed models.
- Key intermediate assertion:
 - If $pc_i = check$, turn = i, and $pc_i = set$, then first(check_i) > last(main_i).
 - That is, if i is about to check turn and get a positive answer, and j is about to set turn, then the earliest time when i might check it is strictly after the latest time when j might set it.
 - Rules out the bad interleaving.
- Can prove this by an easy induction.
- Use it to prove main assertion:

- If $pc_i \in \{ \text{ leave-try, crit, reset } \}$, then turn = i, and for every j, $pc_j \neq \text{set.}$

• Which immediately implies mutual exclusion.

Proof of progress

- Easy event-based argument:
 - By contradiction: Assume someone is in T, and no one is thereafter ever in C.
 - Then eventually region changes stop, everyone is in either T or R, at least one process is in T.
 - Eventually turn acquires a contender's index, then stabilizes to some contender's index, say i.
 - Then i proceeds to C.
- Refine this argument to a time bound, for the time from when someone is in T until someone is in C:
 - $-2a_2 + 5l_2 = 2kl_2 + 5l_2$
 - Since k is approximately L = l₂ / l₁ (timing uncertainty ratio), this is
 2 L l₂ + O(l₂)
 - Thus, timing uncertainty stretches the time complexity.

Stretching the time complexity

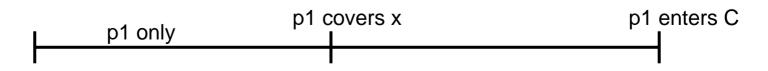
- Q: Why is the time complexity "stretched" by the timing uncertainty $L = (I_2/I_1)$, yielding an $L I_2$ term?
- Process i must ensure that time t = l₂ has elapsed, to know that another process has had enough time to perform a step.
- Process i determines this by counting its own steps.
- Must count at least t / I₁ steps to be sure that time t has elapsed, even if i's steps are fast (I₁).
- But the steps could be slow (I₂), so the total time could be as big as (t / I₁) I₂ = (I₂ / I₁) t = L t.
- Requires real time Lt for process in a system with timing uncertainty L to be sure that time t has elapsed.
- Similar stretching phenomenon arose in timeout example.

Lower bound on time

 Theorem: There is no timed mutex algorithm for 2 processes with 1 shared variable, having an upper bound of L l₂ on the time for someone to reach C.

• Proof:

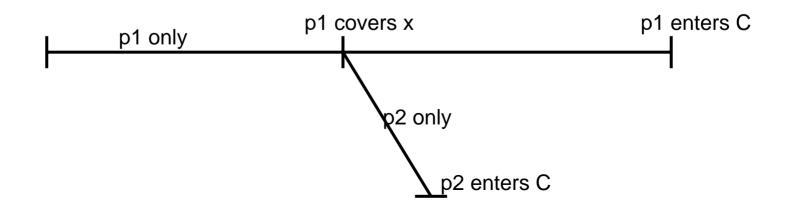
- Like the proof that 1 register is insufficient for 2-process asynchronous mutual exclusion.
- By contradiction; suppose such an algorithm exists.
- Consider admissible execution α in which process 1 runs alone, slowly (all steps take I_2).
- By assumption, process 1 must enter C within time L I_2 .
- Must write to the register x before \rightarrow C.
- Pause process 1 just before writing x for the first time.



Lower bound on time

• Proof, cont'd:

- Now run process 2, from where process 1 covers x.
- p2 sees initial state, so eventually \rightarrow C.
- If p2 takes steps as slowly as possible (I_2), must $\rightarrow C$ within time L I_2 .
- If we speed p2 up (shrink), p2 \rightarrow C within time L I₂ (I₁ / I₂) = L I₁.
- So we can run process 2 all the way to C during the time p1 is paused, since $I_2 = L I_1$.
- Then as in asynchronous case, can resume p1, overwrites x, enters C, contradiction.



The Fischer algorithm is fragile

- Depends on timing assumptions, even for the main safety property, mutual exclusion.
- It would be nice if safety were independent of timing (e.g., like Paxos).
- Can modify Fischer so mutual exclusion holds in all asynchronous runs, for n processes, using 3 registers [Section 24.3].
- But this fails to guarantee progress, even assuming timing eventually stabilizes (like Paxos).
- In fact, progress depends crucially on timing:
 - If time bounds are violated, then algorithm can deadlock, making future progress impossible.
- In fact, we have:

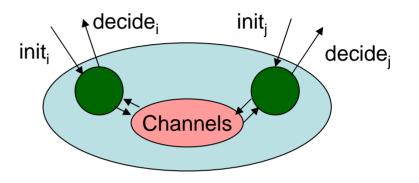
Another impossibility result!

- It's impossible to guarantee n-process mutual exclusion in all asynchronous runs, progress if timing stabilizes, with < n registers:
- Theorem: There is no asynchronous read/write sharedmemory algorithm for n ≥ 2 processes that:
 - Guarantees well-formedness and mutual exclusion when run asynchronously,
 - Guarantees progress when run so that each process' step bounds eventually are in the range $[I_1, I_2]$, and
 - Uses < n shared registers.
- !!!
- Proof: Similar to that of impossibility of asynchronous mutex for < n registers (tricky).

Timed Consensus Algorithms

Consensus in timed systems

- Network model:
- Process:
 - MMT automaton, finitely many tasks.
 - − Task bounds $[I_1, I_2]$, 0 < $I_1 \le I_2 < \infty$, L = I_2 / I_1
 - Stopping failures only.
- Channels:
 - GTA or TIOA
 - Reliable FIFO channels, upper bound of d for every message.
- Properties:
 - Agreement,
 - Validity (weak or strong),
 - Failure-free termination
 - f-failure termination, wait-free termination



- In general, we're allowed to rely on time bounds for both safety + liveness.
- Q: Can we solve faulttolerant agreement? How many failures? How much time does it take?

Consensus in timed systems

• Assumptions:

 $- V = \{ 0, 1 \},$

- Completely connected graph,
- I_1 , $I_2 \ll d$ (in fact, $n I_2 \ll d$, $L I_2 \ll d$).
- Every task always enabled.
- Results:
 - Simple algorithm, for any number f of failures, strong validity, time bound \approx f L d
 - Simple lower bound: (f+1) d.
 - More sophisticated algorithm: \approx Ld + (2f+2) d
 - More sophisticated lower bound: \approx Ld + (f-1) d
- [Attiya, Dwork, Lynch, Stockmeyer]

Simple algorithm

- Implement a perfect failure detector, which times out failed processes.
 - Process i sends periodic "alive" messages.
 - Process i determines process j has failed if i doesn't receive any messages from j for a large number of i's steps (\approx (d + l₂) / l₁ steps).
 - Time until detection at most \approx L d + O(L I₂).
 - Ld is the time needed for a timeout.
- Use the failure detector to simulate a round-based synchronous consensus algorithm for the required f+1 rounds.
- Time for consensus at most \approx f L d + O(f L I₂).

Simple lower bound

- Upper bound (so far): \approx f L d + O(f L I₂).
- Lower bound (f+1)d
 - Follows from (f+1)-round lower bound for synchronous model, via a model transformation.
- Note the role of the timing uncertainty L:
 - Appears in the upper bound: f Ld, time for f successive timeouts.
 - But doesn't appear in the lower bound.
- Q: How does the real cost depend on L?

Better algorithm

- Time bound: $Ld + (2f+2)d + O(f I_2 + L I_2)$
 - Time for just one timeout!
 - Tricky algorithm, LTTR.
 - Uses a series of rounds, each involving an attempt to decide.
 - At even-numbered rounds, try to decide 0; at odd-numbered rounds, try to decide 1.
 - Each failure can cause an attempt to fail, move on to another round.
 - Successful round takes time at most ≈ Ld.
 - Unsuccessful round k takes time at most ≈ (f_k + 1) d, where f_k is the number of processes that fail at round k.

Better lower bound

- Upper bound: \approx Ld + (2f+2)d
- Lower bound: Ld + (f-1) d
- Interesting proof---uses practically every lower bound technique we've seen:
 - Chain argument, as in Chapter 6.
 - Bivalence argument, as in Chapter 12.
 - Stretching and shrinking argument for timed executions, as in Chapter 24.
- LTTR

[Dwork, Lynch, Stockmeyer 88] consensus results

- 2007 Dijkstra prize
- Weaken the time bound assumptions so that they hold eventually, from some point on, not necessarily always.
- Assume n > 2f (unsolvable otherwise).
- Guarantees agreement, validity, f-failure termination.
 - Thus, safety properties (agreement and validity) don't depend on timing.
 - Termination does---but in a nice way: guaranteed to terminate if time bound assumptions hold from any point on.
 - Similar to problem solved by Paxos.
- Algorithm:
 - Similar to Paxos (earlier), but allows less concurrency.

[DLS] algorithm

- Rotating coordinator as in 3-phase commit, pre-allocated "stages".
- In each stage, one pre-determined coordinator takes charge, tries to coordinate agreement using a four-round protocol:
 - 1. Everyone sends "acceptable" values to coordinator; if coordinator receives "enough", it chooses one to propose.
 - 2. Coordinator sends proposed value to everyone; anyone who receives it "locks" the value.
 - 3. Everyone who received a proposal in round 2 sends an ack to the coordinator; if coordinator receives "enough" acks, decides on the proposed value.
 - 4. Everyone exchanges lock info.
- "Acceptable" means opposite value isn't locked.
- Implementing synchronous rounds:
 - Use the time assumptions.
 - Emulation may be unreliable until timing stabilizes.
 - That translates into possible lost messages, in earlier rounds.
 - Algorithm can tolerate lost messages before stabilization.

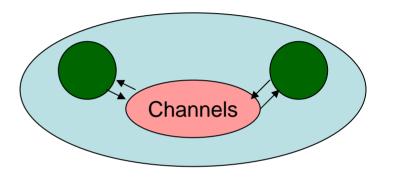
Mutual exclusion vs. consensus

- Mutual exclusion with < n shared registers:
 - Asynchronous systems:
 - Impossible
 - Timed systems:
 - Solvable, time upper bound O($L I_2$), matching lower bound
 - Systems where timing assumptions hold from some point on:
 - Impossible to guarantee both safety (mutual exclusion) and liveness (progress).
- Consensus with f failures, $f \ge 1$:
 - Asynchronous systems:
 - Impossible
 - Timed systems:
 - Solvable, time upper bound L d + O(d), matching lower bound.
 - Systems where timing assumptions hold from some point on:
 - Can guarantee both safety (agreement and validity) and liveness (ffailure termination), for n > 2f.

Clock Synchronization Algorithms

Clock synchronization

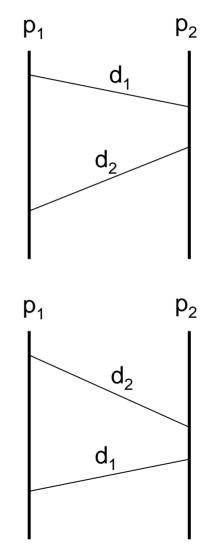
- Network model:
- Process:
 - TIOA
 - Includes a physical clock component that progresses at some (possibly varying) rate in the range [1 - ρ, 1+ ρ].
 - Not under the process' control.
- Channels:
 - GTA or TIOA
 - Reliable FIFO channels, message delay bounds in interval [d₁, d₂].
- Properties:
 - Each node, at each time, computes the value of a logical clock
 - Agreement: Logical clocks should become, and remain, within a small constant ϵ of each other.
 - Validity: Logical clock values should be approximately within the range of the physical clock values.



- Issues:
 - Timing uncertainty
 - Tolerating failures
 - Scalability
 - Accommodating external clock inputs

Timing uncertainty

- E.g., 2 processes:
 - Messages from p_1 to p_2 might always take the minimum time d_1 .
 - Messages from p_2 to p_1 might always take the maximum time d_2 .
 - Or vice versa.
 - Either way, the logical clocks are supposed to be within ϵ of each other.
 - Implies that $\epsilon \ge (d_2 d_1) / 2$
- Can achieve $\epsilon \approx (d_2 d_1) / 2$, if clock drift rate is very small and there are no failures.
- For n processes in fully connected graph, can achieve $\varepsilon \approx (d_2 - d_1) (1 - 1/n)$, and that's provably optimal.

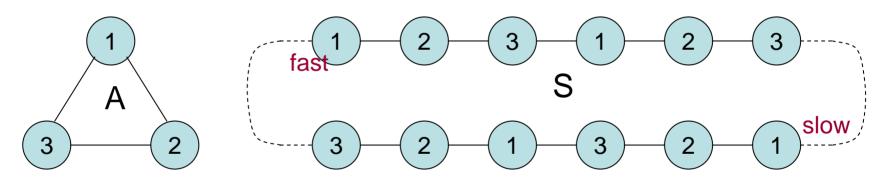


Accommodating failures

- Several published algorithms for n > 3f processes to establish and maintain clock synchronization, in the presence of up to f Byzantine faulty processes.
 - [Lamport], [Dolev, Strong], [Lundelius, Lynch],...
 - Some algorithms perform fault-tolerant averaging.
 - Some wait until f+1 processes claim a time has been reached before jumping to that time.
 - Etc.
- Lower bound: n > 3f is necessary.
 - Original proof: [Dolev, Strong]
 - Cuter proof: [Fischer, Lynch, Merritt]
 - By contradiction: Assume (e.g.) a 3-process clock synch algorithm that tolerates 1 Byzantine faulty process.
 - Form a large ring, from many copies of the algorithm:

Accommodating failures

- Lower bound proof: n > 3f necessary
 - By contradiction: Assume a 3-process clock synch algorithm that tolerates 1 Byzantine faulty process.
 - Form a large ring, from many copies of the algorithm:



- Let the physical clocks drift progressively, as we move around the ring, fastest and slowest at opposite sides of the ring.
- Any consecutive pair's logical clocks must remain within ϵ of each other, by agreement, and must remain approximately within the range of their physical clocks, by validity.
- Can't satisfy this everywhere in the ring.

Scalability

- Large, not-fully-connected network.
- E.g., a line:

- Can't hope to synchronize distant nodes too closely.
- Instead, try to achieve a gradient property, saying that neighbors' clocks are always closely synchronized.
- Impossibility result for gradient clock synch [Fan 04]: Any clock synch algorithm in a line of length D has some reachable state in which the logical clocks of two neighbors are Ω(log D / log log D) apart.
- Algorithms exist that achieve a constant gradient "most of the time".
- And newer algorithms that achieve O(log D) all of the time.

External clock inputs

- Practical clock synch algorithms use reliable external clock sources:
 - NTP time service in Internet
 - GPS in mobile networks
- Nodes with reliable time info send it to other nodes.
- Recipients may correct for communication delays
- Typically ignore failures.

Mobile Wireless Network Algorithms

Mobile networks

- Nodes moving in physical space, communicating using local broadcast.
- Mobile phones, hand-held computers; robots, vehicles, airplanes
- Physical space:
 - Generally 2-dimensional, sometimes 3
- Nodes:
 - Have uids.
 - May know the approximate real time, and their own approximate locations.
 - May fail or be turned off, may restart.
 - Don't know a priori who else is participating, or who is nearby.
- Communication:
 - Broadcast, received by nearby listening nodes.
 - May be unreliable, subject to collisions/losses, or
 - May be assumed reliable (relying on backoff mechanisms to mask losses).
- Motion:
 - Usually unpredictable, subject to physical limitations, e.g. velocity bounds.
 - May be controllable (robots).
- Q: What problems can/cannot be solved in such networks?

Some preliminary results

- Dynamic graph model
 - Welch, Walter, Vaidya,...
 - Algorithms for mutual exclusion, k-exclusion, message routing,...
- Wireless networks with collisions
 - Algorithms / lower bounds for broadcast in the presence of collisions [Bar-Yehuda, Goldreich, Itai], [Kowalski, Pelc],...
 - Algorithms / lower bounds for consensus [Newport, Gilbert, et al.]
- Rambo atomic memory algorithm
 - [Gilbert, Lynch, Shvartsman]
 - Reconfigurable Atomic Memory for Basic (read/write) Objects
 - Implemented using a changing quorum system configuration.
 - Paxos consensus used to change the configuration, runs in the background without interfering with ongoing reads/writes.
- Virtual Node abstraction layers for mobile networks
 - Gilbert, Nolte, Brown, Newport,...

Some preliminary results

- Neighbor discovery, counting number of nodes, maintaining network structures,...
- Leave all this for another course.

VN Layers for mobile networks

- Add Virtual Nodes: Simple state machines (TIOAs) located at fixed, known geographical locations (e.g., grid points).
- Mobile nodes in the vicinity emulate the VSNs, using a Replicated State Machine approach, with an elected leader managing communication.
- Virtual Nodes may fail, later recover in initial state.
- Program applications over the VSN layer.
 - Geocast, location services, point-to-point communication, bcast.
 - Data collection and dissemination.
 - Motion coordination (robots, virtual traffic lights, virtual air-traffic controllers).
- Other work: Neighbor discovery, counting number of nodes, maintaining network structures,...
- Leave all this for another course.

Next time...

- There is no next time!
- Have a very nice break!

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.