
6.852: Distributed Algorithms
Fall, 2009

Class 5

Today’s plan
• Review EIG algorithm for Byzantine agreement.
• Number-of-processors lower bound for Byzantine

agreement.
• Connectivity bounds.
• Weak Byzantine agreement.
• Time lower bounds for stopping agreement and

Byzantine agreement.
• Reading: Sections 6.3-6.7, [Aguilera, Toueg],

[Keidar-Rajsbaum]
• Next:

– Other distributed agreement problems
– Reading: Chapter 7 (but skim 7.2)

Byzantine agreement
• Recall correctness conditions:

– Agreement: No two nonfaulty processes decide on
different values.

– Validity: If all nonfaulty processes start with the same v,
then v is the only allowable decision for nonfaulty
processes.

– Termination: All nonfaulty processes eventually decide.
• Presented EIG algorithm for Byzantine agreement,

using:
– Exponential communication (in f)
– f+1 rounds
– n > 3f

EIG algorithm for Byzantine
agreement

• Use EIG tree.
• Relay messages for f+1 rounds.
• Decorate the EIG tree with values from V, replacing any

garbage messages with default value v0.
• Call the decorations val(x), where x is any node label.
• Decision rule:

– Redecorate the tree bottom-up, defining newval(x).
• Leaf: newval(x) = val(x)
• Non-leaf: newval(x) =

– newval of strict majority of children in the tree, if majority exists,
– v0 otherwise.

– Final decision: newval(λ) (newval at root)

0001111101 1 0 1001111111 1 00001111101 0 0

Example: n = 4, f = 1
• T4,1:
• Consider a possible

execution in which p3 is
faulty.

• Initial values 1 1 0 0
• Round 1
• Round 2

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

Process 1 Process 2 Process 4(Process 3)

1 001

1 1 0 0 1 1 1 0 1 1 1 0

Lies

0001111101 1 0 1001111111 1 00001111101 0 0

Example: n = 4, f = 1
• Now calculate newvals, bottom-up, choosing majority

values, v0 = 0 if no majority.

Process 1 Process 2 Process 4(Process 3)

1 001

1 1 0 0 1 1 1 0 1 1 1 0

1 11

1 1 1 0 1 1 1 0 1 1 1 0

Corrected by taking majority

Correctness proof
• Lemma 1: If x ends with a nonfaulty process index then

val(x)i = val(x)j for every nonfaulty i and j.
• In example, such nodes are:

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

• Lemma 2: If x ends with a nonfaulty process index then ∃v
such that val(x)i = newval(x)i = v for every nonfaulty i.

• Proof: Induction on level in the tree, bottom up.

Main correctness conditions

• Validity:
– Uses Lemma 2.

• Termination:
– Obvious.

• Agreement:

Agreement
• Path covering: Subset

of nodes containing at
least one node on each
path from root to leaf:

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

• Common node: One for which all nonfaulty processes
have the same newval.
– All nodes whose labels end in nonfaulty process index

are common.

Agreement
• Lemma 3: There exists a path covering all of whose

nodes are common.
• Proof:

– Let C = nodes with labels of the form xj, j nonfaulty.

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

• Lemma 4: If there’s a
common path covering
of the subtree rooted at
any node x, then x is
common

• Lemma 5: The root is
common.

• Yields Agreement.

Complexity bounds

• As for EIG for stopping agreement:
– Time: f+1
– Communication: O(nf+1)

• But now, also requires n > 3f processors.

• Q: Is n > 3f necessary?

Lower bound on the number of
processes for Byzantine

Agreement

Number of processors for
Byzantine agreement

• n > 3f is necessary!
– Holds for any n-node (undirected) graph.
– For graphs with low connectivity, may need even more

processors.
– Number of failures that can be tolerated for Byzantine

agreement in an undirected graph G has been
completely characterized, in terms of number of nodes
and connectivity.

• Theorem 1: 3 processes cannot solve Byzantine
Agreement with 1 possible failure.

Proof (3 vs. 1 BA)
• By contradiction. Suppose algorithm A,

consisting of processes 1, 2, 3, solves
BA with 1 possible failure.

• Construct new system S from 2 copies
of A, with initial values as follows:

• What is S?
– A synchronous system of some kind.
– Not required to satisfy any particular

correctness conditions.
– Not necessarily a correct BA algorithm for

the 6-node ring.
– Just some synchronous system, which runs

and does something.
– We’ll use it to get our contradiction.

3 2

1

A

1 2

3

1′2′

3′

0

0

0

1

1

1

S

Proof (3 vs 1 BA)

• Consider 2 and 3 in S:
• Looks to them like:

– They’re in A, with a faulty
process 1.

– 1 emulates 1′-2′-3′-1 from S.
• In A, 2 and 3 must decide 0
• So by indistinguishability,

they decide 0 in S also.

1 2

3

1′2′

3′

0

0

0

1

1

1

S

3 2

1

A
0 0

0 0

0

0

Proof (3 vs 1 BA)

• Now consider 1′ and 2′ in S.
• Looks to them like:

– They’re in A with a faulty
process 3.

– 3 emulates 3′-1-2-3 from S.
• They must decide 1 in A, so

they decide 1 in S also.

1 2

3

1′2′

3′

0

0

0

1

1

1

S

3 2

1

A1

1 1

0

0

1

1 1

Proof (3 vs 1 BA)
• Finally, consider 3 and 1′ in S:
• Looks to them like:

– They’re in A, with a faulty process 2.
– 2 emulates 2′-3′-1-2 from S.

• In A, 3 and 1 must agree.
• So by indistinguishability, 3 and

1′ agree in S also.

• But we already know that
process 1′ decides 1 and
process 3 decides 0, in S.

• Contradiction!

1 2

3

1′2′

3′

0

0

0

1

1

1

S

3 2

1

A
0

1

0

0

1 1

Discussion

• We get this contradiction even if the original
algorithm A is assumed to “know n”.

• That simply means that:
– The processes in A have the number 3 hard-wired into

their state.
– Their correctness properties are required to hold only

when they are actually configured into a triangle.
• We are allowed to use these processes in a

different configuration S---as long as we don’t
claim any particular correctness properties for S.

Impossibility for n = 3f
• Theorem 2: n processes can’t solve BA, if n ≤ 3f.
• Proof:

– Similar construction, with f processes treated as a group.
– Or, can use a reduction:

• Show how to transform a solution for n ≤ 3f to a solution for 3 vs. 1.
• Since 3 vs. 1 is impossible, we get a contradiction.

• Consider n = 2 as a special case:
– n = 2, f = 1
– Each could be faulty, requiring the other to decide on its own value.
– Or both nonfaulty, which requires agreement, contradiction.

• So from now on, assume 3 ≤ n ≤ 3f.
• Assume a Byzantine Agreement algorithm A for (n,f).
• Transform it into a BA algorithm B for (3,1).

1 2
0 1

Transforming A to B
• Algorithm:

– Partition A-processes into groups I1, I2, I3, where 1 ≤ |I1|, |I2|, |I3| ≤ f.
– Each Bi process simulates the entire Ii group.

– Bi initializes all processes in Ii with Bi’s initial value.
– At each round, Bi simulates sending messages:

• Local: Just simulate locally.
• Remote: Package and send.

– If any simulated process decides, Bi decides the same (use any).
• Show B satisfies correctness conditions:

– Consider any execution of B with at most 1 fault.
– Simulates an execution of A with at most f faults.
– Correctness conditions must hold in the simulated execution of A.
– Show these all carry over to B’s execution.

B1

B3

B2

B’s correctness
• Termination:

– If Bi is nonfaulty in B, then it simulates only nonfaulty processes of
A (at least one).

– Those terminate, so Bi does also.
• Agreement:

– If Bi, Bj are nonfaulty processes of B, they simulate only nonfaulty
processes of A.

– Agreement in A implies all these agree.
– So Bi, Bj agree.

• Validity:
– If all nonfaulty processes of B start with v, then so do all nonfaulty

processes of A.
– Then validity of A implies that all nonfaulty A processes decide v,

so the same holds for B.

General graphs and connectivity
bounds

• n > 3f isn’t the whole story:
– 4 processes, can’t tolerate 1 fault:

• Theorem 3: BA is solvable in an n-node graph G,
tolerating f faults, if and only if both of the following hold:
– n > 3f, and
– conn(G) > 2f.

• conn(g) = minimum number of nodes whose removal
results in either a disconnected graph or a 1-node graph.

• Examples:

conn = 1
conn = 3

conn = 3

Proof: “If” direction
• Theorem 3: BA is solvable in an n-node graph G,

tolerating f faults, if and only if n > 3f and conn(G) > 2f.
• Proof (“if”):

– Suppose both hold.
– Then we can simulate a total-connectivity algorithm.
– Key is to emulate reliable communication from any node i to any

other node j.
– Rely on Menger’s Theorem, which says that a graph is c-connected

(that is, has conn ≥ c) if and only if each pair of nodes is connected
by ≥ c node-disjoint paths.

– Since conn(G) ≥ 2f + 1, we have ≥ 2f + 1 node-disjoint paths
between i and j.

– To send message, send on all these paths (assumes graph is
known).

– Majority must be correct, so take majority message.

Proof: “Only if” direction
• Theorem 3: BA is solvable in an n-node graph G,

tolerating f faults, if and only if n > 3f and conn(G) > 2f.

• Proof (“only if”):
– We already showed n > 3f; remains to show conn(G) > 2f.
– Show key idea with simple case, conn = 2, f = 1.
– Canonical example:

• Disconnect 1 and 3 by removing 2 and 4:
– Proof by contradiction.
– Assume some algorithm A that solves BA in this

canonical graph, tolerating 1 failure.

4 2

1

333

A

Proof (conn = 2, 1 failure)

• Now construct S from two
copies of A.

• Consider 1, 2, and 3 in S:
– Looks to them like they’re in A,

with a faulty process 4.
– In A, 1, 2, and 3 must decide 0
– So they decide 0 in S also.

• Similarly, 1′, 2′, and 3′ decide
1 in S.

4 2

1

333

A

4′

1 32

3′ 1′2′

4

0 0
0

1

1

1

S 0

1

0

0

0

0 00

111

Proof (conn = 2, 1 failure)
• Finally, consider 3′, 4′, and 1 in S:

– Looks to them like they’re in A, with a
faulty process 2.

– In A, they must agree, so they also
agree in S.

– But 3′ decides 0 and 1 decides 1 in S,
contradiction.

• Therefore, we can’t solve BA in
canonical graph, with 1 failure.

• As before, can generalize to
conn(G) ≤ 2f, or use a reduction.

4 2

1

333

A

4′

1 32

3′ 1′2′

4

0 0
0

1

1

1

S 0

1

0

1

1

0 00

111

Byzantine processor bounds
• The bounds n > 3f and conn > 2f are fundamental

for consensus-style problems with Byzantine
failures.

• Same bounds hold, in synchronous settings with f
Byzantine faulty processes, for:
– Byzantine Firing Squad synchronization problem
– Weak Byzantine Agreement
– Approximate agreement

• Also, in timed (partially synchronous settings), for
maintaining clock synchronization.

• Proofs used similar methods.

Weak Byzantine Agreement
[Lamport]

• Correctness conditions for BA:
– Agreement: No two nonfaulty processes decide on different values.
– Validity: If all nonfaulty processes start with the same v, then v is

the only allowable decision for nonfaulty processes.
– Termination: All nonfaulty processes eventually decide.

• Correctness conditions for Weak BA:
– Agreement: Same as for BA.
– Validity: If all processes are nonfaulty and start with the same v,

then v is the only allowed decision value.
– Termination: Same as for BA.

• Limits the situations where the decision is forced to go a
certain way.

• Similar style to validity condition for 2-Generals problem.

WBA Processor Bounds

• Theorem 4: Weak BA is solvable in an n-node
graph G, tolerating f faults, if and only if n > 3f and
conn(G) > 2f.

• Same bounds as for BA.

• Proof:
– “If”: Follows from results for ordinary BA.
– “Only if”:

• By constructions like those for ordinary BA, but slightly more
complicated.

• Show 3 vs. 1 here, rest LTTR.

Proof (3 vs. 1 Weak BA)
• By contradiction. Suppose algorithm A,

consisting of procs 1, 2, 3, solves WBA with 1
fault.

• Let α0 = execution in which everyone starts with 0
and there are no failures; results in decision 0.

• Let α1 = execution in which everyone starts with 1
and there are no failures; results in decision 1.

• Let b = upper bound on number of rounds for all
processes to decide, in both α0 and α1.

• Construct new system S from 2b copies of A:

3 2

1

A

321

123

S
321

123
111111

000000

Proof (3 vs. 1 Weak BA)
• Claim: Any two adjacent processes in S must

decide the same thing..
– Because it looks to them like they are in A, and they

must agree in A.
• So everyone decides the same in S.
• WLOG, all decide 1.

321

123

S
321

123
111111

000000

11 1 1 1 1

11 1 1 1 1

Proof (3 vs. 1 Weak BA)
• Now consider a block of 2b + 1 consecutive processes that

begin with 0:

• Claims:
– To all but the endpoints, the execution of S is indistinguishable from

α0, the failure-free execution in which everyone starts with 0, for 1
round.

– To all but two at each end, indistinguishable from α0 for 2 rounds.
– To all but three at each end, indistinguishable from α0 for 3 rounds.
– …
– To midpoint, indistinguishable for b rounds.

• But b rounds are enough for the midpoint to decide 0,
contradicting the fact that everyone decides 1 in S.

321 321321

000 000000

Lower bound on the number of
rounds for Byzantine agreement

Lower bound on number of rounds

• Notice that f+1 rounds are used in all the
agreement algorithms we’ve seen so far---both
stopping and Byzantine.

• That’s inherent: f+1 rounds are needed in the
worst-case, even for simple stopping failures.

• Assume an f-round algorithm A tolerating f faults,
and get a contradiction.

• Restrictions on A (WLOG):
– n-node complete graph.
– Decisions at end of round f.
– V = {0,1}
– All-to-all communication at every round ≤ f.

Special case: f = 1
• Theorem 5: Suppose n ≥ 3. There is no n-process 1-fault

stopping agreement algorithm in which nonfaulty
processes always decide at the end of round 1.

• Proof: Suppose A exists.
– Construct a chain of executions, each with at most one failure, such

that:
• First has (unique) decision value 0.
• Last has decision value 1.
• Any two consecutive executions in the chain are indistinguishable to

some process i that is nonfaulty in both. So i must decide the same in
both executions, and the two must have the same decision values.

– Decision values in first and last executions must be the same.
– Contradiction.

Round lower bound, f = 1
• α0: All processes have input 0, no failures.
• …
• αk (last one): All inputs 1, no failures.
• Start the chain from α0.
• Next execution,α1, removes message 1 → 2.

– α0 and α1 indistinguishable to everyone except 1
and 2; since n ≥ 3, there is some other process.

– These processes are nonfaulty in both executions.
• Next execution, α2, removes message 1 → 3.

– α1 and α2 indistinguishable to everyone except 1
and 3, hence to some nonfaulty process.

• Next, remove message 1 → 4.
– Indistinguishable to some nonfaulty process.

0

0

0

0

0

0

0

0

0

0

0

0

Continuing…
• Having removed all of process 1’s

messages, change 1’s input from 0 to 1.
– Looks the same to everyone else.

• We can’t just keep removing messages,
since we are allowed at most one failure in
each execution.

• So, we continue by replacing missing
messages, one at a time.

• Repeat with process 2, 3, and 4, eventually
reach the last execution: all inputs 1, no
failures.

0

0

0

0

1

0

0

0

1

0

0

0

1

1

1

1

Special case: f = 2
• Theorem 6: Suppose n ≥ 4. There is no n-process 2-fault

stopping agreement algorithm in which nonfaulty
processes always decide at the end of round 2.

• Proof: Suppose A exists.
– Construct another chain of executions, each with at most 2 failures.

• This time a bit longer and more complicated.
– Start with α0: All processes have input 0, no failures, 2 rounds:

0

0

0

0

– Work toward αn, all 1’s, no failures.
– Each consecutive pair is indistinguishable

to some nonfaulty process.
– Use intermediate execs αi, in which:

• Processes 1,…,i have initial value 1.
• Processes i+1,…,n have initial value 0.
• No failures.

Special case: f = 2
• Show how to connect α0 and α1.

– That is, change process 1’s initial value from 0 to 1.
– Other intermediate steps essentially the same.

• Start with α0, work toward killing p1 at the beginning, to
change its initial value, by removing messages.

• Then replace the messages, working back up to α1.
• Start by removing p1’s round 2 messages, one by one.
• Q: Continue by removing p1’s round 1 messages?

0

0

0

0

• No, because consecutive executions
would not look the same to anyone:
– E.g., removing 1 → 2 at round 1 allows

p2 to tell everyone about the failure.

• Removing 1 → 2 at round 1 allows p2 to tell all other processes about
the failure:

• Distinguishable to everyone.
• So we must do something more elaborate.
• Recall that we can allow 2 processes to fail in some executions.
• Use many steps to remove a single round 1 message 1 → i; in these

steps, both 1 and i will be faulty.

Special case: f = 2

0

0

0

0

vs.

0

0

0

0

Removing p1’s round 1 messages
• Start with execution where p1 sends to everyone at round

1, and only p1 is faulty.
• Remove round 1 message 1 → 2:

– p2 starts out nonfaulty, so sends all its round 2 messages.
– Now make p2 faulty.
– Remove p2’s round 2 messages, one by one, until we reach an

execution where 1 → 2 at round 1, but p2 sends no round 2
messages.

– Now remove the round 1 message 1 → 2.
• Executions look the same to all but 1 and 2 (and they’re nonfaulty).

– Replace all the round 2 messages from p2, one by one, until p2 is
no longer faulty.

• Repeat to remove p1’s round 1 messages to p3, p4,…
• After removing all of p1’s round 1 messages, change p1’s

initial value from 0 to 1, as needed.

General case: Any f
• Theorem 7: Suppose n ≥ f + 2. There is no n-process f-

fault stopping agreement algorithm in which nonfaulty
processes always decide at the end of round f.

• Proof: Suppose A exists.
– Same ideas, longer chain.
– Must fail f processes in some executions in the chain, in order to

remove all the required messages, at all rounds.
– Construction in book, LTTR.

• Newer proof [Aguilera, Toueg]:
– Uses ideas from [FLP] impossibility of consensus.
– They assume strong validity, but the proof works for our weaker

validity condition also.

Lower bound on rounds,
[Aguilera, Toueg]

• Proof:
– By contradiction. Assume A solves stopping agreement for f

failures and everyone decides after exactly f rounds.
– Restrict attention to executions in which at most one process fails

during each round.
– Recall failure at a round allows process to miss sending an arbitrary

subset of the messages, or to send all but halt before changing
state.

– Consider vector of initial values as a 0-round execution.
– Defs (adapted from [Fischer, Lynch, Paterson]): α, an execution

that completes some finite number (possibly 0) of rounds, is:
• 0-valent, if 0 is the only decision that can occur in any execution (of the

kind we consider) that extends α.
• 1-valent, if 1 is…
• Univalent, if α is either 0-valent or 1-valent (essentially decided).
• Bivalent, if both decisions occur in some extensions (undecided).

Initial bivalence
• Lemma 1: There is some 0-round execution

(vector of initial values) that is bivalent.
• Proof (adapted from [FLP]):

– Assume for contradiction that all 0-round executions are
univalent.

– 000…0 is 0-valent
– 111…1 is 1-valent
– So there must be two 0-round executions that differ in

the value of just one process, say i, such that one is 0-
valent and the other is 1-valent.

– But this is impossible, because if process i fails at the
start, no one else can distinguish the two 0-round
executions.

Bivalence through f-1 rounds
• Lemma 2: For every k, 0 ≤ k ≤ f-1, there is a bivalent k-

round execution.
• Proof: By induction on k.

– Base (k=0): Lemma 1.
– Inductive step: Assume for k, show for k+1, where k < f -1.

α

α* α0

round k+1

1-valent 0-valent

• Assume bivalent k-round execution α.
• Assume for contradiction that every 1-round

extension of α (with at most one new failure)
is univalent.

• Let α* be the 1-round extension of α in
which no new failures occur in round k+1.

• By assumption, this is univalent, WLOG 1-
valent.

• Since α is bivalent, there must be another 1-
round extension of α, α0, that is 0-valent.

Bivalence through f-1 rounds
• In α0, some single process i fails in round

k+1, by not sending to some subset of the
processes, say J = {j1, j2,…jm}.

• Define a chain of (k+1)-round executions,
α0,α1, α2,…,αm.

• Each αl in this sequence is the same as α0

except that i also sends messages to j1,
j2,…jl.
– Adding in messages from i, one at a time.

• Each αl is univalent, by assumption.
• Since α0 is 0-valent, there are 2 possibilities:

– At least one of these is 1-valent, or
– All of these are 0-valent.

α

α* α0

round k+1

1-valent 0-valent

Case 1: At least one αl is 1-valent

• Then there must be some l such that αl-1 is 0-
valent and αl is 1-valent.

• But αl-1 and αl differ after round k+1 only in the
state of one process, jl.

• We can extend both αl-1 and αl by simply failing jl at
beginning of round k+2.
– There is actually a round k+2 because we’ve assumed k

< f-1, so k+2 ≤ f.
• And no one left alive can tell the difference!
• Contradiction for Case 1.

Case 2: Every αl is 0-valent
• Then compare:

– αm, in which i sends all its round k+1 messages and then fails, with
– α* , in which i sends all its round k+1 messages and does not fail.

• No other differences, since only i fails at round k+1 in αm.
• αm is 0-valent and α* is 1-valent.
• Extend to full f-round executions:

– αm, by allowing no further failures,
– α*, by failing i right after round k+1 and then allowing no further

failures.
• No one can tell the difference.
• Contradiction for Case 2.

• So we’ve proved:
• Lemma 2: For every k, 0 ≤ k ≤ f-1, there is a bivalent k-

round execution.

And now the final round…
• Lemma 3: There is an f-round execution in which two

nonfaulty processes decide differently.
• Contradicts the problem requirements.
• Proof:

α

α* α0

round f

decide 1 decide 0

– Use Lemma 2 to get a bivalent (f-1)-round execution α
with ≤ f-1 failures.

– In every 1-round extension of α, everyone who hasn’t
failed must decide (and agree).

– Let α* be the 1-round extension of α in which no new
failures occur in round f.

– Everyone who is still alive decides after α*, and they
must decide the same thing. WLOG, say they decide 1.

– Since α is bivalent, there must be another 1-round
extension of α, say α0, in which some nonfaulty process
decides 0 (and hence, all decide 0).

Disagreement after f rounds
• In α0, some single process i fails in round f.
• Let j, k be two nonfaulty processes.
• Define a chain of three f-round executions, α0,α1, α*,

where α1 is identical toα0 except that i sends to j in α1

(it might not inα0).

α

α* α0

round f

decide 1 decide 0
• Then α1 ~k α0.
• Since k decides 0 in α0, k also decides 0 in α1.
• Also, α1 ~j α*.
• Since j decides 1 in α*, j also decides 1 in α1.
• Yields disagreement in α1, contradiction!

• So we have proved:
• Lemma 3: There is an f-round execution in which two nonfaulty

processes decide differently.
• Which immediately yields the impossibility result.

Early-stopping agreement algorithms
• Tolerate f failures in general, but in executions with f′ < f

failures, terminate faster.
• [Dolev, Reischuk, Strong 90] Stopping agreement

algorithm in which all nonfaulty processes terminate in ≤
min(f′ + 2, f+1) rounds.
– If f′ + 2 ≤ f, decide “early”, within f′ + 2 rounds; in any case decide

within f+1 rounds.
• [Keidar, Rajsbaum 02] Lower bound of f′ + 2 for early-

stopping agreement.
– Not just f′ + 1. Early stopping requires an extra round.

• Theorem 8: Assume 0 ≤ f′ ≤ f – 2 and f < n. Every early-
stopping agreement algorithm tolerating f failures has an
execution with f′ failures in which some nonfaulty process
doesn’t decide by the end of round f′ + 1.

Special case: f′ = 0
• Theorem 9: Assume 2 ≤ f < n. Every early-stopping agreement

algorithm tolerating f failures has a failure-free execution in which some
nonfaulty process does not decide by the end of round 1.

• Definition: Let α be an execution that completes some finite number
(possibly 0) of rounds. Then val(α) is the unique decision value in the
extension of α with no new failures.
– Different from bivalence defs---now consider value in just one extension.

• Proof:
– Again, assume executions in which at most one process fails per round.
– Identify 0-round executions with vectors of initial values.
– Assume, for contradiction, that everyone decides by round 1, in all failure-

free executions.
– val(000…0) = 0, val(111…1) = 1.
– So there must be two 0-round executions α0 and α1, that differ in the value

of just one process i, such that val(α0) = 0 and val(α1) = 1.

Special case: f′ = 0
• 0-round executions α0 and α1, differing only in the initial value of

process i, such that val(α0) = 0 and val(α1) = 1.
• In the ff extensions of α0 and α1, all nonfaulty processes decide in just

one round.
• Define:

– β0, 1-round extension of α0, in which process i fails, sends only to j.
– β1, 1-round extension of α1, in which process i fails, sends only to j.

• Then:
– β0 looks to j like ff extension of α0, so j decides 0 in β0 after 1 round.
– β1 looks to j like ff extension of α1, so j decides 1 in β1 after 1 round.

• β0 and β1 are indistinguishable to all processes except i, j.
• Define:

– γ 0, infinite extension of β0, in which process j fails right after round 1.
– γ 1, infinite extension of β1, in which process j fails right after round 1.

• By agreement, all nonfaulty processes must decide 0 in γ 0, 1 in γ 1.
• But γ 0 and γ 1 are indistinguishable to all nonfaulty processes, so they

can’t decide differently, contradiction.

Next time…

• Other kinds of consensus problems:
– k-agreement
– Approximate agreement (skim)
– Distributed commit

• Reading: Chapter 7

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Byzantine agreement
	EIG algorithm for Byzantine agreement
	Example: n = 4, f = 1
	Example: n = 4, f = 1
	Correctness proof
	Main correctness conditions
	Agreement
	Agreement
	Complexity bounds
	Lower bound on the number of processes for Byzantine Agreement
	Number of processors for Byzantine agreement
	Proof (3 vs. 1 BA)
	Proof (3 vs 1 BA)
	Proof (3 vs 1 BA)
	Proof (3 vs 1 BA)
	Discussion
	Impossibility for n = 3f
	Transforming A to B
	B’s correctness
	General graphs and connectivity bounds
	Proof: “If” direction
	Proof: “Only if” direction
	Proof (conn = 2, 1 failure)
	Proof (conn = 2, 1 failure)
	Byzantine processor bounds
	Weak Byzantine Agreement [Lamport]
	WBA Processor Bounds
	Proof (3 vs. 1 Weak BA)
	Proof (3 vs. 1 Weak BA)
	Proof (3 vs. 1 Weak BA)
	Lower bound on the number of rounds for Byzantine agreement
	Lower bound on number of rounds
	Special case: f = 1
	Round lower bound, f = 1
	Continuing…
	Special case: f = 2
	Special case: f = 2
	Special case: f = 2
	Removing p1’s round 1 messages
	General case: Any f
	Lower bound on rounds, [Aguilera, Toueg]
	Initial bivalence
	Bivalence through f-1 rounds
	Bivalence through f-1 rounds
	Case 1: At least one l is 1-valent
	Case 2: Every l is 0-valent
	And now the final round…
	Disagreement after f rounds
	Early-stopping agreement algorithms
	Special case: f = 0
	Special case: f = 0
	Next time…

