6.852: Distributed Algorithms Fall, 2009

Class 5

Today's plan

- Review EIG algorithm for Byzantine agreement.
- Number-of-processors lower bound for Byzantine agreement.
- Connectivity bounds.
- Weak Byzantine agreement.
- Time lower bounds for stopping agreement and Byzantine agreement.
- Reading: Sections 6.3-6.7, [Aguilera, Toueg], [Keidar-Rajsbaum]
- Next:
- Other distributed agreement problems
- Reading: Chapter 7 (but skim 7.2)

Byzantine agreement

- Recall correctness conditions:
- Agreement: No two nonfaulty processes decide on different values.
- Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
- Termination: All nonfaulty processes eventually decide.
- Presented EIG algorithm for Byzantine agreement, using:
- Exponential communication (in f)
$-\mathrm{f}+1$ rounds
- $\mathrm{n}>3 \mathrm{f}$

EIG algorithm for Byzantine agreement

- Use EIG tree.
- Relay messages for f+1 rounds.
- Decorate the EIG tree with values from V , replacing any garbage messages with default value v_{0}.
- Call the decorations val(x), where x is any node label.
- Decision rule:
- Redecorate the tree bottom-up, defining newval(x).
- Leaf: newval(x) = val(x)
- Non-leaf: newval(x) =
- newval of strict majority of children in the tree, if majority exists,
- v_{0} otherwise.
- Final decision: newval(λ) (newval at root)

Example: $n=4, f=1$

- $\mathrm{T}_{4,1}$:
- Consider a possible execution in which p3 is faulty.
- Initial values 1100
- Round 1
- Round 2

```
Lies
```


0

Process 1
Process 2
(Process 3)
Process 4

Example: $n=4, f=1$

- Now calculate newvals, bottom-up, choosing majority values, $\mathrm{v}_{0}=0$ if no majority.

\square

Process 4

Correctness proof

- Lemma 1: If x ends with a nonfaulty process index then $\operatorname{val}(\mathrm{x})_{\mathrm{i}}=\operatorname{val}(\mathrm{x})_{\mathrm{j}}$ for every nonfaulty i and j .
- In example, such nodes are:

- Lemma 2: If x ends with a nonfaulty process index then $\exists v$ such that $\operatorname{val}(\mathrm{x})_{\mathrm{i}}=$ newval $(\mathrm{x})_{\mathrm{i}}=\mathrm{v}$ for every nonfaulty i .
- Proof: Induction on level in the tree, bottom up.

Main correctness conditions

- Validity:
- Uses Lemma 2.
- Termination:
- Obvious.
- Agreement:

Agreement

- Path covering: Subset of nodes containing at least one node on each path from root to leaf:

- Common node: One for which all nonfaulty processes have the same newval.
- All nodes whose labels end in nonfaulty process index are common.

Agreement

- Lemma 3: There exists a path covering all of whose nodes are common.
- Proof:
- Let $\mathrm{C}=$ nodes with labels of the form xj, j nonfaulty.
- Lemma 4: If there's a common path covering of the subtree rooted at any node x, then x is common
- Lemma 5: The root is common.

- Yields Agreement.

Complexity bounds

- As for EIG for stopping agreement:
- Time: f+1
- Communication: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}+1}\right)$
- But now, also requires $n>3 f$ processors.
- Q: Is n > 3f necessary?

Lower bound on the number of processes for Byzantine Agreement

Number of processors for Byzantine agreement

- $n>3 f$ is necessary!
- Holds for any n-node (undirected) graph.
- For graphs with low connectivity, may need even more processors.
- Number of failures that can be tolerated for Byzantine agreement in an undirected graph G has been completely characterized, in terms of number of nodes and connectivity.
- Theorem 1: 3 processes cannot solve Byzantine Agreement with 1 possible failure.

Proof (3 vs. 1 BA)

- By contradiction. Suppose algorithm A, consisting of processes $1,2,3$, solves BA with 1 possible failure.
- Construct new system S from 2 copies of A, with initial values as follows:
- What is S ?
- A synchronous system of some kind.
- Not required to satisfy any particular correctness conditions.
- Not necessarily a correct BA algorithm for
 the 6 -node ring.
- Just some synchronous system, which runs and does something.
- We'll use it to get our contradiction.

Proof (3 vs 1 BA)

- Consider 2 and 3 in S:
- Looks to them like:
- They're in A, with a faulty process 1.
- 1 emulates $1^{\prime}-2^{\prime}-3^{\prime}-1$ from S .
- In A, 2 and 3 must decide 0
- So by indistinguishability, they decide 0 in S also.

Proof (3 vs 1 BA)

- Now consider 1^{\prime} and 2^{\prime} in S.
- Looks to them like:
- They're in A with a faulty process 3.
- 3 emulates 3'-1-2-3 from S.

- They must decide 1 in A, so they decide 1 in S also.

Proof (3 vs 1 BA)

- Finally, consider 3 and 1' in S:
- Looks to them like:
- They're in A, with a faulty process 2.
- 2 emulates 2'-3'-1-2 from S.
- In A, 3 and 1 must agree.
- So by indistinguishability, 3 and 1^{\prime} agree in S also.
- But we already know that process 1' decides 1 and process 3 decides 0 , in S .
- Contradiction!

Discussion

- We get this contradiction even if the original algorithm A is assumed to "know n".
- That simply means that:
- The processes in A have the number 3 hard-wired into their state.
- Their correctness properties are required to hold only when they are actually configured into a triangle.
- We are allowed to use these processes in a different configuration S---as long as we don't claim any particular correctness properties for S.

Impossibility for n = 3f

- Theorem 2: n processes can't solve $B A$, if $n \leq 3 f$.
- Proof:
- Similar construction, with f processes treated as a group.
- Or, can use a reduction:
- Show how to transform a solution for $\mathrm{n} \leq 3 f$ to a solution for 3 vs 1 .
- Since 3 vs. 1 is impossible, we get a contradiction.
- Consider $\mathrm{n}=2$ as a special case:

- $\mathrm{n}=2, \mathrm{f}=1$
- Each could be faulty, requiring the other to decide on its own value.
- Or both nonfaulty, which requires agreement, contradiction.
- So from now on, assume $3 \leq n \leq 3 f$.
- Assume a Byzantine Agreement algorithm A for (n,f).
- Transform it into a BA algorithm B for $(3,1)$.

Transforming A to B

- Algorithm:
- Partition A-processes into groups I_{1}, I_{2}, I_{3}, where $1 \leq\left|I_{1}\right|,\left|I_{2}\right|,\left|I_{3}\right| \leq f$.
- Each B_{i} process simulates the entire I_{i} group.
- B_{i} initializes all processes in I_{i} with B_{i} 's initial value.
- At each round, B_{i} simulates sending messages:
- Local: Just simulate locally.
- Remote: Package and send.

- If any simulated process decides, B_{i} decides the same (use any).
- Show B satisfies correctness conditions:
- Consider any execution of B with at most 1 fault.
- Simulates an execution of A with at most f faults.
- Correctness conditions must hold in the simulated execution of A.
- Show these all carry over to B's execution.

B's correctness

- Termination:
- If B_{i} is nonfaulty in B, then it simulates only nonfaulty processes of A (at least one).
- Those terminate, so B_{i} does also.
- Agreement:
- If B_{i}, B_{j} are nonfaulty processes of B, they simulate only nonfaulty processes of A.
- Agreement in A implies all these agree.
- So B_{i}, B_{j} agree.
- Validity:
- If all nonfaulty processes of B start with v, then so do all nonfaulty processes of A.
- Then validity of A implies that all nonfaulty A processes decide v, so the same holds for B.

General graphs and connectivity bounds

- $\mathrm{n}>3 \mathrm{f}$ isn't the whole story:
- 4 processes, can't tolerate 1 fault:
- Theorem 3: BA is solvable in an n-node graph G, tolerating f faults, if and only if both of the following hold:
- $\mathrm{n}>3 \mathrm{3f}$, and
$-\operatorname{conn}(\mathrm{G})>2 \mathrm{f}$.
- conn $(\mathrm{g})=$ minimum number of nodes whose removal results in either a disconnected graph or a 1-node graph.
- Examples:

$$
\text { conn }=3
$$

Proof: "If" direction

- Theorem 3: BA is solvable in an n-node graph G, tolerating f faults, if and only if $n>3 f$ and conn(G) $>2 f$.
- Proof ("if"):
- Suppose both hold.
- Then we can simulate a total-connectivity algorithm.
- Key is to emulate reliable communication from any node i to any other node j.
- Rely on Menger's Theorem, which says that a graph is c-connected (that is, has conn \geq c) if and only if each pair of nodes is connected by \geq c node-disjoint paths.
- Since conn(G) $\geq 2 f+1$, we have $\geq 2 f+1$ node-disjoint paths between i and j .
- To send message, send on all these paths (assumes graph is known).
- Majority must be correct, so take majority message.

Proof: "Only if" direction

- Theorem 3: BA is solvable in an n-node graph G, tolerating f faults, if and only if $n>3 f$ and conn(G) $>2 f$.
- Proof ("only if"):
- We already showed $n>3 f$; remains to show conn(G) > $2 f$.
- Show key idea with simple case, conn $=2, f=1$.
- Canonical example:
- Disconnect 1 and 3 by removing 2 and 4 :
- Proof by contradiction.
- Assume some algorithm A that solves BA in this canonical graph, tolerating 1 failure.

Proof (conn = 2, 1 failure)

- Now construct S from two copies of A.
- Consider 1, 2, and 3 in S:
- Looks to them like they're in A, with a faulty process 4.
- In A, 1, 2, and 3 must decide 0
- So they decide 0 in S also.
- Similarly, $1^{\prime}, 2^{\prime}$, and 3^{\prime} decide 1 in S .

Proof (conn = 2, 1 failure)

- Finally, consider $3^{\prime}, 4^{\prime}$, and 1 in S:
- Looks to them like they're in A, with a faulty process 2.
- In A, they must agree, so they also agree in S.
- But 3^{\prime} decides 0 and 1 decides 1 in S , contradiction.
- Therefore, we can't solve BA in canonical graph, with 1 failure.
- As before, can generalize to $\operatorname{conn}(G) \leq 2 f$, or use a reduction.

Byzantine processor bounds

- The bounds $\mathrm{n}>3 f$ and conn > 2 f are fundamental for consensus-style problems with Byzantine failures.
- Same bounds hold, in synchronous settings with f Byzantine faulty processes, for:
- Byzantine Firing Squad synchronization problem
- Weak Byzantine Agreement
- Approximate agreement
- Also, in timed (partially synchronous settings), for maintaining clock synchronization.
- Proofs used similar methods.

Weak Byzantine Agreement [Lamport]

- Correctness conditions for BA:
- Agreement: No two nonfaulty processes decide on different values.
- Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
- Termination: All nonfaulty processes eventually decide.
- Correctness conditions for Weak BA:
- Agreement: Same as for BA.
- Validity: If all processes are nonfaulty and start with the same v, then v is the only allowed decision value.
- Termination: Same as for BA.
- Limits the situations where the decision is forced to go a certain way.
- Similar style to validity condition for 2-Generals problem.

WBA Processor Bounds

- Theorem 4: Weak BA is solvable in an n-node graph G, tolerating f faults, if and only if $n>3 f$ and conn(G) > 2 f .
- Same bounds as for BA.
- Proof:
- "If": Follows from results for ordinary BA.
- "Only if":
- By constructions like those for ordinary BA, but slightly more complicated.
- Show 3 vs. 1 here, rest LTTR.

Proof (3 vs. 1 Weak BA)

- By contradiction. Suppose algorithm A, consisting of procs $1,2,3$, solves WBA with 1 fault.
- Let $\alpha_{0}=$ execution in which everyone starts with 3 and there are no failures; results in decision 0 .
- Let $\alpha_{1}=$ execution in which everyone starts with 1 and there are no failures; results in decision 1.
- Let $\mathrm{b}=$ upper bound on number of rounds for all processes to decide, in both α_{0} and α_{1}.
- Construct new system S from $2 b$ copies of A :

Proof (3 vs. 1 Weak BA)

- Claim: Any two adjacent processes in S must decide the same thing..
- Because it looks to them like they are in A, and they must agree in A.
- So everyone decides the same in S.
- WLOG, all decide 1.

Proof (3 vs. 1 Weak BA)

- Now consider a block of $2 \mathrm{~b}+1$ consecutive processes that begin with 0:

- Claims:
- To all but the endpoints, the execution of S is indistinguishable from α_{0}, the failure-free execution in which everyone starts with 0 , for 1 round.
- To all but two at each end, indistinguishable from α_{0} for 2 rounds.
- To all but three at each end, indistinguishable from α_{0} for 3 rounds.
- To midpoint, indistinguishable for b rounds.
- But brounds are enough for the midpoint to decide 0, contradicting the fact that everyone decides 1 in S .

Lower bound on the number of rounds for Byzantine agreement

Lower bound on number of rounds

- Notice that $\mathrm{f}+1$ rounds are used in all the agreement algorithms we've seen so far---both stopping and Byzantine.
- That's inherent: $f+1$ rounds are needed in the worst-case, even for simple stopping failures.
- Assume an f-round algorithm A tolerating f faults, and get a contradiction.
- Restrictions on A (WLOG):
- n-node complete graph.
- Decisions at end of round f.
$-\mathrm{V}=\{0,1\}$
- All-to-all communication at every round $\leq \mathrm{f}$.

Special case: f=1

- Theorem 5: Suppose $\mathrm{n} \geq 3$. There is no n-process 1 -fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round 1.
- Proof: Suppose A exists.
- Construct a chain of executions, each with at most one failure, such that:
- First has (unique) decision value 0.
- Last has decision value 1.
- Any two consecutive executions in the chain are indistinguishable to some process i that is nonfaulty in both. So i must decide the same in both executions, and the two must have the same decision values.
- Decision values in first and last executions must be the same.
- Contradiction.

Round lower bound, $\mathrm{f}=1$

- α_{0} : All processes have input 0, no failures.
- α_{k} (last one): All inputs 1, no failures.
- Start the chain from α_{0}.

- Next execution, α_{1}, removes message $1 \rightarrow 2$.
- α_{0} and α_{1} indistinguishable to everyone except 1 and 2 ; since $n \geq 3$, there is some other process.
- These processes are nonfaulty in both executions.
- Next execution, α_{2}, removes message $1 \rightarrow 3$.

- α_{1} and α_{2} indistinguishable to everyone except 1 and 3 , hence to some nonfaulty process.
- Next, remove message $1 \rightarrow 4$.
- Indistinguishable to some nonfaulty process.

Continuing...

- Having removed all of process 1's messages, change 1's input from 0 to 1.
- Looks the same to everyone else.
- We can't just keep removing messages, since we are allowed at most one failure in
 each execution.
- So, we continue by replacing missing messages, one at a time.
- Repeat with process 2 , 3 , and 4 , eventually reach the last execution: all inputs 1, no failures.

Special case: f=2

- Theorem 6: Suppose $\mathrm{n} \geq 4$. There is no n-process 2 -fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round 2.
- Proof: Suppose A exists.
- Construct another chain of executions, each with at most 2 failures.
- This time a bit longer and more complicated.
- Start with α_{0} : All processes have input 0 , no failures, 2 rounds:
- Work toward α_{n}, all 1's, no failures.
- Each consecutive pair is indistinguishable to some nonfaulty process.
- Use intermediate execs $\alpha_{i,}$ in which:
- Processes $1, \ldots$, i have initial value 1.
- Processes $\mathrm{i}+1, \ldots, \mathrm{n}$ have initial value 0 .

- No failures.

Special case: f=2

- Show how to connect α_{0} and α_{1}.
- That is, change process 1's initial value from 0 to 1.
- Other intermediate steps essentially the same.
- Start with α_{0}, work toward killing p1 at the beginning, to change its initial value, by removing messages.
- Then replace the messages, working back up to α_{1}.
- Start by removing p1's round 2 messages, one by one.
- Q: Continue by removing p1's round 1 messages?
- No, because consecutive executions would not look the same to anyone:
- E.g., removing $1 \rightarrow 2$ at round 1 allows p2 to tell everyone about the failure.

Special case: f=2

- Removing $1 \rightarrow 2$ at round 1 allows p2 to tell all other processes about the failure:

vs.

- Distinguishable to everyone.
- So we must do something more elaborate.
- Recall that we can allow 2 processes to fail in some executions.
- Use many steps to remove a single round 1 message $1 \rightarrow i$; in these steps, both 1 and i will be faulty.

Removing p1's round 1 messages

- Start with execution where p1 sends to everyone at round 1 , and only p1 is faulty.
- Remove round 1 message $1 \rightarrow 2$:
- p2 starts out nonfaulty, so sends all its round 2 messages.
- Now make p2 faulty.
- Remove p2's round 2 messages, one by one, until we reach an execution where $1 \rightarrow 2$ at round 1, but p2 sends no round 2 messages.
- Now remove the round 1 message $1 \rightarrow 2$.
- Executions look the same to all but 1 and 2 (and they're nonfaulty).
- Replace all the round 2 messages from p2, one by one, until p2 is no longer faulty.
- Repeat to remove p1's round 1 messages to p3, p4,...
- After removing all of p1's round 1 messages, change p1's initial value from 0 to 1 , as needed.

General case: Any f

- Theorem 7: Suppose $n \geq f+2$. There is no n-process f fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round f.
- Proof: Suppose A exists.
- Same ideas, longer chain.
- Must fail f processes in some executions in the chain, in order to remove all the required messages, at all rounds.
- Construction in book, LTTR.
- Newer proof [Aguilera, Toueg]:
- Uses ideas from [FLP] impossibility of consensus.
- They assume strong validity, but the proof works for our weaker validity condition also.

Lower bound on rounds, [Aguilera, Toueg]

- Proof:
- By contradiction. Assume A solves stopping agreement for f failures and everyone decides after exactly f rounds.
- Restrict attention to executions in which at most one process fails during each round.
- Recall failure at a round allows process to miss sending an arbitrary subset of the messages, or to send all but halt before changing state.
- Consider vector of initial values as a 0 -round execution.
- Defs (adapted from [Fischer, Lynch, Paterson]): α, an execution that completes some finite number (possibly 0) of rounds, is:
- 0 -valent, if 0 is the only decision that can occur in any execution (of the kind we consider) that extends α.
- 1-valent, if 1 is...
- Univalent, if α is either 0-valent or 1-valent (essentially decided).
- Bivalent, if both decisions occur in some extensions (undecided).

Initial bivalence

- Lemma 1: There is some 0-round execution (vector of initial values) that is bivalent.
- Proof (adapted from [FLP]):
- Assume for contradiction that all 0-round executions are univalent.
- 000... 0 is 0 -valent
- 111 ... 1 is 1 -valent
- So there must be two 0-round executions that differ in the value of just one process, say i, such that one is $0-$ valent and the other is 1 -valent.
- But this is impossible, because if process ifails at the start, no one else can distinguish the two 0 -round executions.

Bivalence through f-1 rounds

- Lemma 2: For every $\mathrm{k}, 0 \leq \mathrm{k} \leq \mathrm{f}-1$, there is a bivalent k round execution.
- Proof: By induction on k.
- Base (k=0): Lemma 1.
- Inductive step: Assume for k, show for $k+1$, where $k<f-1$.
- Assume bivalent k-round execution α.
- Assume for contradiction that every 1-round extension of α (with at most one new failure) is univalent.
- Let α^{*} be the 1 -round extension of α in which no new failures occur in round $\mathrm{k}+1$.
- By assumption, this is univalent, WLOG 1valent.
- Since α is bivalent, there must be another 1round extension of α, α^{0}, that is 0 -valent.

1-valent

Bivalence through f-1 rounds

- In α^{0}, some single process i fails in round $k+1$, by not sending to some subset of the processes, say $\mathrm{J}=\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots \mathrm{j}_{\mathrm{m}}\right\}$.
- Define a chain of $(k+1)$-round executions, $\alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{m}$.

1-valent

- Each α^{1} in this sequence is the same as α^{0} except that i also sends messages to j_{1}, $\mathrm{j}_{2}, \ldots \mathrm{j}_{1}$.
- Adding in messages from i, one at a time.
- Each α^{l} is univalent, by assumption.
- Since α^{0} is 0 -valent, there are 2 possibilities:
- At least one of these is 1 -valent, or
- All of these are 0 -valent.

Case 1: At least one α^{\prime} is 1-valent

- Then there must be some I such that α^{l-1} is $0-$ valent and α^{\prime} is 1 -valent.
- But α^{l-1} and α^{l} differ after round $k+1$ only in the state of one process, j_{1}.
- We can extend both α^{l-1} and α^{\prime} by simply failing j_{1} at beginning of round $\mathrm{k}+2$.
- There is actually a round $k+2$ because we've assumed k $<\mathrm{f}-1$, so $\mathrm{k}+2 \leq \mathrm{f}$.
- And no one left alive can tell the difference!
- Contradiction for Case 1.

Case 2: Every α^{l} is 0 -valent

- Then compare:
$-\alpha^{m}$, in which i sends all its round $k+1$ messages and then fails, with
$-\alpha^{*}$, in which i sends all its round $k+1$ messages and does not fail.
- No other differences, since only i fails at round $k+1$ in α^{m}.
- α^{m} is 0 -valent and α^{*} is 1-valent.
- Extend to full f-round executions:
- α^{m}, by allowing no further failures,
- α^{\star}, by failing i right after round $k+1$ and then allowing no further failures.
- No one can tell the difference.
- Contradiction for Case 2.
- So we've proved:
- Lemma 2: For every $\mathrm{k}, 0 \leq \mathrm{k} \leq \mathrm{f}-1$, there is a bivalent k round execution.

And now the final round...

- Lemma 3: There is an f-round execution in which two nonfaulty processes decide differently.
- Contradicts the problem requirements.
- Proof:
- Use Lemma 2 to get a bivalent ($f-1$)-round execution α with $\leq \mathrm{f}-1$ failures.
- In every 1-round extension of α, everyone who hasn't failed must decide (and agree).
- Let α^{*} be the 1-round extension of α in which no new failures occur in round f.
- Everyone who is still alive decides after α^{*}, and they must decide the same thing. WLOG, say they decide 1.
- Since α is bivalent, there must be another 1-round extension of α, say α^{0}, in which some nonfaulty process decides 0 (and hence, all decide 0).

Disagreement after f rounds

- In α^{0}, some single process i fails in round f .
- Let j, k be two nonfaulty processes.
- Define a chain of three f-round executions, $\alpha^{0}, \alpha^{1}, \alpha^{*}$, where α^{1} is identical to α^{0} except that i sends to j in α^{1} (it might not in α^{0}).
- Then $\alpha^{1} \sim^{k} \alpha^{0}$.

- Since k decides 0 in α^{0}, k also decides 0 in α^{1}.
- Also, $\alpha^{1} \sim \alpha^{*}$.
- Since j decides 1 in α^{*}, j also decides 1 in α^{1}.
- Yields disagreement in α^{1}, contradiction!
- So we have proved:
- Lemma 3: There is an f-round execution in which two nonfaulty processes decide differently.
- Which immediately yields the impossibility result.

Early-stopping agreement algorithms

- Tolerate f failures in general, but in executions with $f^{\prime}<f$ failures, terminate faster.
- [Dolev, Reischuk, Strong 90] Stopping agreement algorithm in which all nonfaulty processes terminate in \leq $\min \left(f^{\prime}+2, f+1\right)$ rounds.
- If $f^{\prime}+2 \leq f$, decide "early", within $f^{\prime}+2$ rounds; in any case decide within $\mathrm{f}+1$ rounds.
- [Keidar, Rajsbaum 02] Lower bound of $f^{\prime}+2$ for earlystopping agreement.
- Not just $\mathrm{f}^{\prime}+1$. Early stopping requires an extra round.
- Theorem 8: Assume $0 \leq \mathrm{f}^{\prime} \leq \mathrm{f}-2$ and $\mathrm{f}<\mathrm{n}$. Every earlystopping agreement algorithm tolerating f failures has an execution with f^{\prime} failures in which some nonfaulty process doesn't decide by the end of round $f^{\prime}+1$.

Special case: $f^{\prime}=0$

- Theorem 9: Assume $2 \leq \mathrm{f}<\mathrm{n}$. Every early-stopping agreement algorithm tolerating f failures has a failure-free execution in which some nonfaulty process does not decide by the end of round 1.
- Definition: Let α be an execution that completes some finite number (possibly 0) of rounds. Then $\operatorname{val}(\alpha)$ is the unique decision value in the extension of α with no new failures.
- Different from bivalence defs---now consider value in just one extension.
- Proof:
- Again, assume executions in which at most one process fails per round.
- Identify 0-round executions with vectors of initial values.
- Assume, for contradiction, that everyone decides by round 1, in all failurefree executions.
$-\operatorname{val}(000 \ldots 0)=0, \operatorname{val}(111 \ldots 1)=1$.
- So there must be two 0 -round executions α^{0} and α^{1}, that differ in the value of just one process i, such that $\operatorname{val}\left(\alpha^{0}\right)=0$ and $\operatorname{val}\left(\alpha^{1}\right)=1$.

Special case: $f^{\prime}=0$

- 0 -round executions α^{0} and α^{1}, differing only in the initial value of process i, such that $\operatorname{val}\left(\alpha^{0}\right)=0$ and $\operatorname{val}\left(\alpha^{1}\right)=1$.
- In the ff extensions of α^{0} and α^{1}, all nonfaulty processes decide in just one round.
- Define:
- β^{0}, 1-round extension of α^{0}, in which process i fails, sends only to j.
- $\beta^{1}, 1$-round extension of α^{1}, in which process i fails, sends only to j.
- Then:
- β^{0} looks to j like ff extension of α^{0}, so j decides 0 in β^{0} after 1 round.
- β^{1} looks to j like ff extension of α^{1}, so j decides 1 in β^{1} after 1 round.
- β^{0} and β^{1} are indistinguishable to all processes except i, j.
- Define:
- γ^{0}, infinite extension of β^{0}, in which process j fails right after round 1.
- γ^{1}, infinite extension of β^{1}, in which process j fails right after round 1.
- By agreement, all nonfaulty processes must decide 0 in $\gamma^{0}, 1$ in γ^{1}.
- But γ^{0} and γ^{1} are indistinguishable to all nonfaulty processes, so they can't decide differently, contradiction.

Next time...

- Other kinds of consensus problems:
- k-agreement
- Approximate agreement (skim)
- Distributed commit
- Reading: Chapter 7

MIT OpenCourseWare
|http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

