6.852: Distributed Algorithms Fall, 2009

Class 4

Today's plan

- Fault-tolerant consensus in synchronous systems
- Link failures:
- The Two Generals problem
- Process failures:
- Stopping and Byzantine failure models
- Algorithms for agreement with stopping and Byzantine failures
- Exponential information gathering
- Reading: Section 5.1, 6.1-6.3
- Next:
- Lower bounds for Byzantine agreement:
- Number of processors
- Number of rounds
- Reading:
- Sections 6.4-6.7
- [Aguilera, Toueg]
- (Optional) [Keidar-Rajsbaum]

Distributed consensus

- Abstract problem of reaching agreement among processes in a distributed system, all of which start with their own "opinions".
- Complications: Failures (process, link); timing uncertainties.
- Motivation:
- Database transactions: Commit or abort
- Aircraft control:
- Agree on value of altimeter reading (SIFT)
- Agree on which plane should go up/down, in resolving encounters (TCAS)
- Resource allocation: Agree on who gets priority for obtaining a resource, doing the next database update, etc.
- Replicated state machines: To emulate a virtual machine consistently, agree on next step.
- Fundamental problem
- We'll revisit it several times:
- In synchronous, asynchronous, and partially synchronous settings.
- With link failures, processor failures.
- Algorithms, impossibility results.

Consensus with link failures

- Informal scenario:
- Several generals plan a coordinated attack.
- All should agree to attack:
- Absolutely must agree.
- Should attack if possible.
- Each has an initial opinion about his army's readiness.
- Nearby generals can communicate using foot messengers:
- Unreliable, can get lost or captured
- Connected, undirected communication graph, known to all generals, known bound on time for successful messenger to deliver message.
- Motivation: Transaction commit
- Can show no algorithm exists!

Formal problem statement

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, undirected graph (bidirected edges)
- Synchronous model, n processes
- Each process has input 1 (attack) or 0 (don't attack).
- Any subset of the messages can be lost.
- All should eventually set decision output variables to 0 or 1 .
- In practice, would need this by some deadline.
- Correctness conditions:
- Agreement:
- No two processes decide differently.
- Validity:
- If all start with 0 , then 0 is the only allowed decision.
- If all start with 1 and all messages are successfully delivered, then 1 is the only allowed decision.

Alternatively:

- Stronger validity condition:
- If anyone starts with 0 then 0 is the only allowed decision.
- If all start with 1 and all messages are successfully delivered, then 1 is the only allowed decision.
- Typical for transaction commit ($1=$ commit, $0=$ abort).
- Guidelines:
- For designing algorithms, try to use stronger correctness conditions (better algorithm).
- For impossibility results, use weaker conditions (better impossibility result).

Impossibility for 2 Generals [Gray]

- Other cases similar, LTTR.
- Proof: By contradiction.
- Suppose we have a solution---a process (states, transitions) for each index 1, 2.
- Assume WLOG that both processes send messages at every round.
- Could add dummy messages.
- Proof based on limitations of local knowledge.
- Start with α, the execution where both start with 1 and all messages are received.
- By the termination condition, both eventually decide.
- Say, by the end of r rounds.
- By the validity condition, both decide on 1.

2-Generals Impossibility

- α_{1} : Same as α, but lose all messages after round r .
- Doesn't matter, since they've already decided by round r.
- So, both decide 1 in α_{1}.
- α_{2} : Same as α_{1}, but lose the last message from process 1 to process 2 .
- Claim α_{1} is indistinguishable from α_{2} by process $1, \alpha_{1} \sim^{1} \alpha_{2}$.
- Formally, 1 sees the same sequence of states, incoming and outgoing messages.
- So process 1 also decides 1 in α_{2}.
- By termination, process 2 decides in α_{2}.
- By agreement, process 2 decides 1 in α_{2}.

A fine point:

- In α_{2}, process 2 must decide 1 at some point, not necessarily by round r.

Continuing...

- α_{3} : Same as α_{2}, but lose the last message from process 2 to process 1.
- Then $\alpha_{2} \sim^{2} \alpha_{3}$.
- So process 2 decides 1 in α_{3}.
- By termination, process 1 decides in α_{3}.
- By agreement, process 1 decides 1 in α_{3}.
- α_{4} : Same as α_{3}, but lose the last message from process 1 to process 2 .
- Then $\alpha_{3} \sim^{1} \alpha_{4}$.
- So process 1 decides 1 in α_{4}.
- So process 2 decides 1 in α_{4}.
- Keep removing edges, get to:

The contradiction

- $\alpha_{2 r+1}$: Both start with 1 , no messages received.
- Still both must eventually decide 1.
- $\alpha_{2 r+2}$: process 1 starts with 1, process 2 starts with 0 , no messages received.
- Then $\alpha_{2 r+1} \sim^{1} \alpha_{2 r+2}$.
- So process 1 decides 1 in $\alpha_{2 r+2}$.
- So process 2 decides 1 in $\alpha_{2 r+2}$.
- $\alpha_{2 r+3}$: Both start with 0 , no messages received.
- Then $\alpha_{2 r+2} \sim^{2} \alpha_{2 r+3}$.
- So process 2 decides 1 in $\alpha_{2 r+3}$.
- So process 1 decides 1 in $\alpha_{2 r+3}$.
- But $\alpha_{2 r+3}$ contradicts weak validity!

Consensus with process failures

- Stopping failures (crashes) and Byzantine failures (arbitrary processor malfunction, possibly malicious)
- Agreement problem:
- n-node connected, undirected graph, known to all processes.
- Input v from a set V , in some state variable.
- Output v from V, by setting decision := v.
- Bounded number $\leq f$ of processors may fail.
- Bounded number of failures:
- A typical way of describing limited amounts of failure.
- Alternatives: Bounded rate of failure; probabilistic bounds on failure.

Stopping agreement

- Assume process may stop at any point:
- Between rounds.
- While sending messages at a round; any subset of intended messages may be delivered.
- After sending, before changing state.
- Correctness conditions:
- Agreement: No two processes (failing or not) decide on different values.
- "Uniform agreement"
- Validity: If all processes start with the same v, then v is the only allowable decision.
- Termination: All nonfaulty processes eventually decide.
- Alternatively:
- Stronger validity condition: Every decision value must be some process' initial value.
- Use this later, for k-agreement.

Byzantine agreement

- "Byzantine Generals Problem" [Lamport, Pease, Shostak]
- Originally "Albanian Generals"
- Faulty processes may exhibit "arbitrary behavior":
- Can start in arbitrary states, send arbitrary messages, perform arbitrary transitions.
- But can't affect anyone else's state or outgoing messages.
- Often called "malicious" (but they aren't necessarily).
- Correctness conditions:
- Agreement: No two nonfaulty processes decide on different values.
- Validity: If all nonfaulty processes start with the same v , then v is the only allowable decision for nonfaulty processes.
- Termination: All nonfaulty processes eventually decide.

Technicality about stopping vs. Byzantine agreement

- A Byzantine agreement algorithm doesn't necessarily solve stopping agreement:
- For stopping, all processes that decide, even ones that later fail, must agree (uniformity condition).
- Too strong for Byzantine setting.
- Implication holds in some special cases, e.g., when all decisions must happen at the end.

Complexity measures

- Time: Number of rounds until all nonfaulty processes decide.
- Communication: Number of messages, or number of bits.
- For Byzantine case, just count those sent by nonfaulty processes.

Simple algorithm for stopping agreement

- Assume complete n-node graph.
- Idea:
- Processes keep sending all \vee values they've ever seen.
- Use simple decision rule at the end.
- In more detail:
- Process i maintains $\mathrm{W} \subseteq \mathrm{V}$, initially containing just i's initial value.
- Repeatedly: Broadcast W, add received elements to W.
- After k rounds:
- If $|\mathrm{W}|=1$ then decide on the unique value.
- Else decide on a default value $\mathrm{v}_{0} \in \mathrm{~V}$.
- Q: How large should k be?

How many rounds?

- Depends on number f of failures to be tolerated.
- $\mathrm{f}=0$:
$-\mathrm{k}=1$ is enough.
- All get same W.
- $\mathrm{f}=1$:
- k = 1 doesn't work:
- Say process 1 has initial value u, others have initial value v.
- Process 1 fails during round 1 , sends to some and not others.
- So some have $W=\{v\}$, others $\{u, v\}$, may decide differently.
$-k=2$ does work:
- If someone fails in round 1, then no one fails in round 2.
- General f:
- $k=f+1$

Correctness proof (for k = f+1)

- Claim 1: Suppose $1 \leq r \leq f+1$ and no process fails during round r. Let i and j be two processes that haven't failed by the end of round r. Then $W_{i}=W_{j}$ right after round r.
- Proof: Each gets exactly the union of all the W's of the processes that have not failed by the beginning of round r.
- "Clean round"---allows everyone to resolve their differences.
- Claim 2: Suppose all the W sets are identical just after round r, for all processes that are still non-failed. Then the same is true for any $\mathrm{r}^{\prime}>\mathrm{r}$.
- Proof: Obvious.

Check correctness conditions

- Agreement:
$-\exists$ round $r, 1 \leq r \leq f+1$, at which no process fails (since $\leq f$ failures)---a clean round.
- Claim 1 says all that haven't yet failed have same W after round r .
- Claim 2 implies that all have same W after round $f+1$.
- So nonfaulty processes pick the same value.
- Validity:
- If everyone starts with v, then v is the only value that anyone ever gets, so $|\mathrm{W}|=1$ and v is chosen.
- Termination:
- Obvious from decision rule.

Complexity bounds

- Time: f+1 rounds
- Communication:
- Messages: $\leq(f+1) n^{2}$
- Message bits: Multiply by n b

- Can improve communication:
- Messages: ≤ 2 n2
- Message bits: Multiply by b

Improved algorithm (Opt)

- Each process broadcasts its own value in round 1.
- May broadcast at one other round, just after it first learns about some value different from its own.
- In that case, it chooses just one such value to rebroadcast.
- After f + 1 rounds, use same rule as before:
- If $|\mathrm{W}|=1$ then decide on the unique value.
- Else decide on default value v_{0}.

Correctness

- Relate behavior of Opt to that of the original algorithm.
- Specifically, relate executions of both algorithms with the same inputs and same failure pattern.
- Let OW denote the W set in the optimized algorithm.
- Relation between states of the two algorithms:
- For every i:
- $\mathrm{OW}_{\mathrm{i}} \subseteq \mathrm{W}_{\mathrm{i}}$.
- If $\left|\mathrm{W}_{\mathrm{i}}\right|=1$ then $O W_{i}=W_{i}$.
- If $\left|W_{i}\right|>1$ then $\left|O W_{i}\right|>1$.

- Relation after f+1 rounds implies same decisions.

Proof of correspondence

- Induction on number of rounds (p. 107)
- Key ideas:
- $\mathrm{OW}_{\mathrm{i}} \subseteq \mathrm{W}_{\mathrm{i}}$
- Obvious, since Opt just suppresses sending of some messages from Unopt.
- If $\left|\mathrm{W}_{\mathrm{i}}\right|=1$ then $\mathrm{OW}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}$.
- Nothing suppressed in this case.
- Actually, follows from the first property and the fact that OW_{i} is always nonempty.
- If $\left|W_{i}\right|>1$ then $\left|O W_{i}\right|>1$.
- Inductive step, for some round r :
- If in Unopt, i receives messages only from processes with $|W|=1$, then in Opt, it receives the same sets. So after round $r, \mathrm{OW}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}$.
- Otherwise, in Unopt, i receives a message from some process j with $\left|W_{j}\right|>1$, and so (by induction), $\left|O W_{j}\right|>1$. Then after round $r,\left|W_{i}\right|>1$ and $\left|O W_{i}\right|>1$.

Exponential Information Gathering

(EIG)

- A strategy for consensus algorithms, which works for Byzantine agreement as well as stopping agreement.
- Based on EIG tree data structure.
- EIG tree $\mathrm{T}_{\mathrm{n}, \mathrm{f}}$, for n processes, f failures:
- f+2 levels
- Paths from root to leaf correspond to strings of $f+1$ distinct process names.
- Example: $\mathrm{T}_{4,2}$

EIG Stopping agreement algorithm

- Each process i uses the same EIG tree, $\mathrm{T}_{\mathrm{n}, \mathrm{f}}$.
- Decorates nodes of the tree with values in V , level by level.
- Initially: Decorate root with i's input value.
- Round $r \geq 1$:
- Send all level $r-1$ decorations for nodes whose labels don't include i, to everyone.
- Including yourself---simulate locally.
- Use received messages to decorate level r nodes---to determine label, append sender's id at the end.
- If no message received, use \perp.
- The decoration for node $\left(i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right)$ in i 's tree is the value v such that (i_{k} told i) that (i_{k-1} told i_{k}) that ...that (i_{1} told i_{2}) that i_{1} 's initial value was v.
- Decision rule for stopping case:
- Trivial
- Let $\mathrm{W}=$ set of all values decorating the local EIG tree.
- If $|\mathrm{W}|=1$ decide that value, else default v_{0}.

Example

- 3 processes, 1 failure
- Use $\mathrm{T}_{3,1}$:

Initial values:

Process 1

Process 2

Process 3

E×2nn Pe

- Process 2 is faulty, fails after sending to process 1 at round 1.

- After round 1 :

Process 1
Process 2
Process 3

Example

- After round 2 :

Process 1
Process 2
Process 3
p3 discovers that p2's value is 0 after round 2, by hearing it from p1.

Correctness and complexity

- Correctness similar to previous algorithms.
- Time: $\mathfrak{f + 1}$ rounds, as before.
- Messages: $\leq(f+1) \mathrm{n}^{2}$
- Bits: Exponential in number of failures, $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}+1} \mathrm{~b}\right)$
- Can improve as before by only relaying the first two messages with distinct values.
- Extension:
- The simple EIG stopping algorithm, and its optimized variant, can be used to tolerate worse types of failures.
- Not full Byzantine model---that will require more work...
- Rather, a restricted version of the Byzantine model, in which processes can authenticate messages.
- Removes ability of process to relay false information about what other processes said.

Byzantine agreement algorithm

- Recall correctness conditions:
- Agreement: No two nonfaulty processes decide on different values.
- Validity: If all nonfaulty processes start with the same v , then v is the only allowable decision for nonfaulty processes.
- Termination: All nonfaulty processes eventually decide.
- Present EIG algorithm for Byzantine agreement, using:
- Exponential communication (in f)
- f+1 rounds
- $\mathrm{n}>3 \mathrm{f}$
- Expensive!
- Time bound: Inherent. (Lower bound)
- Number-of-processors bound: Inherent. (Lower bound)
- Communication: Can be improved to polynomial.

Bad example: $\mathrm{n}=3, \mathrm{f}=1$

- Consider three executions of an EIG algorithm, with any decision rule.
- α_{1} : p1 and p2 nonfaulty, initial value 1, p3 faulty, initial value 0
- Round 1: All truthful
- Round 2: p3 lies, telling p1 that "p2 said 0"; all other communications are truthful.
- Validity requires that p1 and p2 decide 1.
- α_{2} : p2 and p3 nonfaulty, initial value 0, p1 faulty, initial value 1
- Round 1: All truthful
- Round 2: p1 lies, telling p3 that "p2 said 1"; all other communications are truthful.
- Validity requires that p2 and p3 decide 0.
- α_{3} : p1 nonfaulty, initial value 1, p3 nonfaulty, initial value 0, p2 faulty, initial value doesn't matter.
- Round 1: p2 tells p1 its initial value is 1 , tells p3 its initial value is 0 (inconsistent).
- Round 2: All truthful.
- $\alpha_{3} \sim^{1} \alpha_{1}$, so p1 behaves the same in both, decides 1 in α_{3}.
- $\alpha_{3} \sim^{3} \alpha_{2}$, so p3 behaves the same in both, decides 0 in α_{3}.
- Contradicts agreement!

Bad example

- α_{1} : p1 and p2 nonfaulty, initial value 1, p3 faulty, initial value 0
- Round 1: All truthful
- Round 2: p3 lies, telling p1 that "p2 said 0"; all other communications are truthful.
- Validity requires that p1 and p2 decide 1.

Bad example

- α_{2} : p2 and p3 nonfaulty, initial value 0, p1 faulty, initial value 1
- Round 1: All truthful
- Round 2: p1 lies, telling p3 that "p2 said 1"; all other communications are truthful.
- Validity requires that p2 and p3 decide 0.

Bad example

- α_{3} : p1 nonfaulty, initial value 1, p3 nonfaulty, initial value $0, \mathrm{p} 2$ faulty, initial value doesn't matter.
- Round 1: p2 tells p1 its initial value is 1 , tells p3 its initial value is 0 (inconsistent).
- Round 2: All truthful.

Notes on the example

- The correct processes can tell something is wrong, but that doesn't help:
- E.g., in $\alpha_{1}, \mathrm{p} 1$ sees that p2 sends 1 , but p3 said that p2 said 0 .
- So p1 knows that either p2 or p3 is faulty, but doesn't know which.
- By termination, p1 has to decide something, but neither value works right in all cases.
- Impossibility of solving Byzantine agreement with 3 processes, 1 failure:
- This is not a proof--- maybe there's a non-EIG algorithm, or one that takes more rounds,...
- Come back to this later.

EIG algorithm for Byzantine agreement

- Assume n > 3f.
- Same EIG tree as before.
- Relay messages for $f+1$ rounds, as before.
- Decorate the tree with values from V , replacing any garbage messages with default value v_{0}.
- New decision rule:
- Call the decorations val(x), where x is a node label.
- Redecorate the tree, defining newval(x).
- Proceed bottom-up.
- Leaf: newval(x) = val(x)
- Non-leaf: newval(x) =
- newval of strict majority of children in the tree, if majority exists,
- v_{0} otherwise.
- Final decision: newval(λ) (newval at root)

Example: $n=4, f=1$

- $\mathrm{T}_{4,1}$:
- Consider a possible execution in which p3 is faulty.
- Initial values 1100
- Round 1
- Round 2

```
Lies
```


0

Process 1
Process 2
(Process 3)
Process 4

Example: $n=4, f=1$

- Now calculate newvals, bottom-up, choosing majority values, $\mathrm{v}_{0}=0$ if no majority.

\square

Process 4

Correctness proof

- Lemma 1: If $\mathrm{i}, \mathrm{j}, \mathrm{k}$ are nonfaulty, then $\mathrm{val}(\mathrm{x})_{\mathrm{i}}$ $=\operatorname{val}(\mathrm{x})_{\mathrm{j}}$ for every node label x ending with k .
- In example, such nodes are:

- Proof: k sends same message to i and j and they decorate accordingly.

Proof, cont'd

- Lemma 2: If x ends with nonfaulty process index then $\exists v \in$ \vee such that $\operatorname{val}(\mathrm{x})_{\mathrm{i}}=$ newval $(\mathrm{x})_{\mathrm{i}}=\mathrm{v}$ for every nonfaulty i .
- Proof: Induction on lengths of labels, bottom up.
- Basis: Leaf.
- Lemma 1 implies that all nonfaulty processes have same val(x).
- newval = val for each leaf.
- Inductive step: $|x|=r \leq f \quad(|x|=f+1$ at leaves)
- Lemma 1 implies that all nonfaulty processes have same val(x), say v.
- We need newval $(x)=v$ everywhere also.
- Every nonfaulty process j broadcasts same v for x at round $r+1$, so $\operatorname{val}(\mathrm{xj})_{i}=v$ for every nonfaulty j and i.
- By inductive hypothesis, also newval(xj) = v for every nonfaulty j and i .
- A majority of labels of x 's children end with nonfaulty process indices:
- Number of children of node x is $\geq n-f>3 f-f=2 f$.
- At most f are faulty.
- So, majority rule applied by i leads to newval $(\mathrm{x})_{\mathrm{i}}=\mathrm{v}$, for all nonfaulty i .

Main correctness conditions

- Validity:
- If all nonfaulty processes begin with v , then all nonfaulty processes broadcast v at round 1 , so val ()$_{i}=v$ for all nonfaulty i, j.
- By Lemma 2, also newval(j) $)_{i}=v$ for all nonfaulty i, j.
- Majority rule implies newval $(\lambda)_{i}=v$ for all nonfaulty i.
- So all nonfaulty i decide v.
- Termination:
- Obvious.
- Agreement:
- Requires a bit more work:

Agreement

- Path covering: Subset of nodes containing at least one node on each path from root to leaf:

- Common node: One for which all nonfaulty processes have the same newval.
- If a node's label ends in nonfaulty process index, Lemma 2 implies it's common.
- Others might be common too.

Agreement

- Lemma 3: There exists a path covering all of whose nodes are common.
- Proof:
- Let $\mathrm{C}=$ nodes with labels of the form xi, i nonfaulty.
- By Lemma 2, all of these are common.
- Claim these form a path covering:
- There are at most faulty processes.
- Each path contains f+1 labels ending with f+1 distinct indices.
- So at least one of these labels ends with a nonfaulty process index.

Agreement

- Lemma 4: If there's a common path covering of the subtree rooted at any node x, then x is common
- Proof:
- By induction, from the leaves up.
- "Common-ness" propagates upward.
- Lemma 5: The root is common.
- Proof: By Lemmas 3 and 4.
- Thus, all nonfaulty processes get the same newval(λ).
- Yields Agreement.

Complexity bounds

- As for EIG for stopping agreement:
- Time: f+1
- Communication: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}+1}\right)$
- Number of processes: n > 3 f

Next time...

- Lower bounds for Byzantine agreement:
- Number of processors
- Bounds for connectivity, weak Byzantine agreement.
- Number of rounds
- Reading:
- Sections 6.4-6.7
- [Aguilera, Toueg]
- (Optional) [Keidar-Rajsbaum]

MIT OpenCourseWare
|http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

