
6.852: Distributed Algorithms
Fall, 2009

Class 4



Today’s plan
• Fault-tolerant consensus in synchronous systems
• Link failures:

– The Two Generals problem
• Process failures:

– Stopping and Byzantine failure models
– Algorithms for agreement with stopping and Byzantine failures
– Exponential information gathering

• Reading:  Section 5.1, 6.1-6.3
• Next:  

– Lower bounds for Byzantine agreement:
• Number of processors
• Number of rounds

– Reading:
• Sections 6.4-6.7
• [Aguilera, Toueg]
• (Optional) [Keidar-Rajsbaum]



Distributed consensus
• Abstract problem of reaching agreement among processes in a 

distributed system, all of which start with their own “opinions”.
• Complications:  Failures (process, link); timing uncertainties.
• Motivation:

– Database transactions:  Commit or abort
– Aircraft control:

• Agree on value of altimeter reading (SIFT)
• Agree on which plane should go up/down, in resolving encounters (TCAS)

– Resource allocation:  Agree on who gets priority for obtaining a resource, 
doing the next database update, etc.

– Replicated state machines:  To emulate a virtual machine consistently, 
agree on next step.

• Fundamental problem
• We’ll revisit it several times:

– In synchronous, asynchronous, and partially synchronous settings.
– With link failures, processor failures.
– Algorithms, impossibility results.



Consensus with link failures
• Informal scenario:

– Several generals plan a coordinated attack.
– All should agree to attack:

• Absolutely must agree.
• Should attack if possible.

– Each has an initial opinion about his army’s readiness.
– Nearby generals can communicate using foot 

messengers:
• Unreliable, can get lost or captured
• Connected, undirected communication graph,  

known to all generals, known bound on time                      
for successful messenger to deliver message.

                    

• Motivation:  Transaction commit
• Can show no algorithm exists!



Formal problem statement
• G = (V,E), undirected graph (bidirected edges)
• Synchronous model, n processes
• Each process has input 1 (attack) or 0 (don’t attack).
• Any subset of the messages can be lost.
• All should eventually set decision output variables to 0 or 1.

– In practice, would need this by some deadline.
• Correctness conditions:

– Agreement:  
• No two processes decide differently.

– Validity:
• If all start with 0, then 0 is the only allowed decision.
• If all start with 1 and all messages are successfully delivered, then 1 is 

the only allowed decision.



Alternatively:

• Stronger validity condition:
– If anyone starts with 0 then 0 is the only allowed 

decision.
– If all start with 1 and all messages are successfully 

delivered, then 1 is the only allowed decision.
– Typical for transaction commit (1 = commit, 0 = abort).

• Guidelines:  
– For designing algorithms, try to use stronger 

correctness conditions (better algorithm).
– For impossibility results, use weaker conditions (better 

impossibility result).



Impossibility for 2 Generals [Gray]

• Other cases similar, LTTR.
• Proof:  By contradiction.

– Suppose we have a solution---a process (states, 
transitions) for each index 1, 2.

– Assume WLOG that both processes send messages at 
every round.

• Could add dummy messages.
– Proof based on limitations of local knowledge.
– Start with α, the execution where both start with 1 and 

all messages are received.
• By the termination condition, both eventually decide.
• Say, by the end of r rounds.
• By the validity condition, both decide on 1.



2-Generals Impossibility
• α1:  Same as α, but lose all messages 

after round r.
– Doesn’t matter, since they’ve already decided 

by round r.
– So, both decide 1 in α1.

• .α2 :  Same as α1, but lose the last 
message from process 1 to process 2.
– Claim α1 is indistinguishable from α2 by 

process 1, α1 ∼1α2.
– Formally, 1 sees the same sequence of 

states, incoming and outgoing messages.
– So process 1 also decides 1 in α2.
– By termination, process 2 decides in α2.
– By agreement, process 2 decides 1 in α2.

Process 1 Process 2

Rd 1

Rd r-1

Rd r

Rd 2

Rd 3



A fine point:

• In α2 , process 2 must decide 1 at some 
point, not necessarily by round r.



Continuing…
• α3:  Same as α2, but lose the last 

message from process 2 to process 1.
– Then  α2 ∼2 α3.
– So process 2 decides 1 in α3.
– By termination, process 1 decides in α3.
– By agreement, process 1 decides 1 in α3.

• α4 :  Same as α3, but lose the last 
message from process 1 to process 2.
– Then α3 ∼1 α4.
– So process 1 decides 1 in α4.
– So process 2 decides 1 in α4.

• Keep removing edges, get to:

Process 1 Process 2

Rd 1

Rd r-1

Rd r

Rd 2

Rd 3



The contradiction
• α2r+1 : Both start with 1, no messages received.

– Still both must eventually decide 1.
• α2r+2 :  process 1 starts with 1, process 2 starts with 0, no 

messages received.
– Then α2r+1 ∼1 α2r+2.
– So process 1 decides 1 in α2r+2.
– So process 2 decides 1 in α2r+2.

• α2r+3 : Both start with 0, no messages received. 
– Then α2r+2 ∼2 α2r+3.
– So process 2 decides 1 in α2r+3.
– So process 1 decides 1 in α2r+3.

• But α2r+3 contradicts weak validity!



Consensus with process failures
• Stopping failures (crashes) and Byzantine failures  

(arbitrary processor malfunction, possibly 
malicious)

• Agreement problem:
– n-node connected, undirected graph, known to all 

processes.
– Input v from a set V, in some state variable.
– Output v from V, by setting decision := v.
– Bounded number ≤ f of processors may fail.

• Bounded number of failures:
– A typical way of describing limited amounts of failure.
– Alternatives:  Bounded rate of failure; probabilistic 

bounds on failure.



Stopping agreement
• Assume process may stop at any point:

– Between rounds.
– While sending messages at a round; any subset of intended 

messages may be delivered.
– After sending, before changing state.

• Correctness conditions:
– Agreement: No two processes (failing or not) decide on different 

values.
• “Uniform agreement”

– Validity: If all processes start with the same v, then v is the only 
allowable decision.

– Termination: All nonfaulty processes eventually decide.
• Alternatively:

– Stronger validity condition: Every decision value must be some 
process’ initial value.

– Use this later, for k-agreement.



Byzantine agreement
• “Byzantine Generals Problem” [Lamport, Pease, Shostak]

– Originally “Albanian Generals”
• Faulty processes may exhibit “arbitrary behavior”:

– Can start in arbitrary states, send arbitrary messages, perform 
arbitrary transitions.

– But can’t affect anyone else’s state or outgoing messages.
– Often called “malicious” (but they aren’t necessarily).

• Correctness conditions:
– Agreement: No two nonfaulty processes decide on different values.
– Validity: If all nonfaulty processes start with the same v, then v is 

the only allowable decision for nonfaulty processes.
– Termination: All nonfaulty processes eventually decide.



Technicality about stopping vs. 
Byzantine agreement

• A Byzantine agreement algorithm doesn’t 
necessarily solve stopping agreement:

• For stopping, all processes that decide, even ones 
that later fail, must agree (uniformity condition).

• Too strong for Byzantine setting.
• Implication holds in some special cases, e.g., 

when all decisions must happen at the end.



Complexity measures

• Time: Number of rounds until all nonfaulty
processes decide.

• Communication: Number of messages, or 
number of bits.  
– For Byzantine case, just count those sent by 

nonfaulty processes.



Simple algorithm for stopping 
agreement

• Assume complete n-node graph.
• Idea:

– Processes keep sending all V values they’ve ever seen.  
– Use simple decision rule at the end.

• In more detail:
– Process i maintains W ⊆ V, initially containing just i’s

initial value.
– Repeatedly:  Broadcast W, add received elements to W.
– After k rounds: 

• If |W| = 1 then decide on the unique value.
• Else decide on a default value v0∈ V.

• Q:  How large should k be?



How many rounds?
• Depends on number f of failures to be tolerated.
• f = 0:  

– k = 1 is enough.
– All get same W.

• f = 1:  
– k = 1 doesn’t work:

• Say process 1 has initial value u, others have initial value v. 
• Process 1 fails during round 1, sends to some and not others. 
• So some have W = {v}, others {u,v}, may decide differently. 

– k = 2 does work:
• If someone fails in round 1, then no one fails in round 2.

• General f:
• k = f + 1 



Correctness proof (for k = f+1)
• Claim 1: Suppose 1 ≤ r ≤ f+1 and no process fails during 

round r.  Let i and j be two processes that haven’t failed by 
the end of round r.  Then Wi = Wj right after round r.

• Proof: Each gets exactly the union of all the W’s of the 
processes that have not failed by the beginning of round r.

• “Clean round”---allows everyone to resolve their 
differences.

• Claim 2: Suppose all the W sets are identical just after 
round r, for all processes that are still non-failed.  Then the 
same is true for any r′ > r.

• Proof: Obvious.



Check correctness conditions
• Agreement:  

– ∃ round r, 1 ≤ r ≤ f+1, at which no process fails (since ≤ f 
failures)---a clean round.

– Claim 1 says all that haven’t yet failed have same W 
after round r.

– Claim 2 implies that all have same W after round f + 1.
– So nonfaulty processes pick the same value.

• Validity:
– If everyone starts with v, then v is the only value that 

anyone ever gets, so |W| = 1 and v is chosen.
• Termination:

– Obvious from decision rule.



Complexity bounds

• Time: f+1 rounds
• Communication:

– Messages:  ≤ (f + 1) n2

– Message bits:  Multiply by n b

• Can improve communication:
– Messages:  ≤ 2 n2

– Message bits:  Multiply by b

Number of values 
sent in a message

A fixed bound on 
number of bits to 
represent a value in V.



Improved algorithm (Opt)

• Each process broadcasts its own value in round 1.
• May broadcast at one other round, just after it first 

learns about some value different from its own.  
• In that case, it chooses just one such value to 

rebroadcast.
• After f + 1 rounds, use same rule as before:  

– If |W| = 1 then decide on the unique value.
– Else decide on default value v0.



Correctness
• Relate behavior of Opt to that of the original algorithm.
• Specifically, relate executions of both algorithms with the 

same inputs and same failure pattern.
• Let OW denote the W set in the optimized algorithm.
• Relation between states of the two algorithms:

– For every i:
• OWi ⊆ Wi.
• If |Wi| = 1 then OWi = Wi.
• If |Wi| > 1 then |OWi| > 1.

• Relation after f+1 rounds implies same decisions.

Not necessarily the same set,
but both > 1.



Proof of correspondence
• Induction on number of rounds (p. 107)
• Key ideas:

– OWi ⊆ Wi
• Obvious, since Opt just suppresses sending of some messages from

Unopt.
– If |Wi| = 1 then OWi = Wi.

• Nothing suppressed in this case.
• Actually, follows from the first property and the fact that OWi is always 

nonempty.
– If |Wi| > 1 then |OWi| > 1.

• Inductive step, for some round r:
• If in Unopt, i receives messages only from processes with  |W| = 1, 

then in Opt, it receives the same sets.  So after round r, OWi = Wi.
• Otherwise, in Unopt, i receives a message from some process j with 

|Wj| > 1, and so (by induction), |OWj| > 1.  Then after round r,  |Wi| > 1 
and |OWi| > 1.



Exponential Information Gathering 
(EIG)

• A strategy for consensus algorithms, which works for 
Byzantine agreement as well as stopping agreement.

• Based on EIG tree data structure.
• EIG tree Tn,f, for n processes, f failures:

– f+2 levels
– Paths from root to leaf correspond to strings of f+1 distinct process 

names.
• Example:  T4,2

1 432

12 13 14 242321

123 124

31 32 34

132 etc.

λ



EIG Stopping agreement algorithm
• Each process i uses the same EIG tree, Tn,f.
• Decorates nodes of the tree with values in V, level by level.
• Initially: Decorate root with i’s input value.
• Round r ≥ 1:

– Send all level r-1 decorations for nodes whose labels don’t include i, to 
everyone.

• Including yourself---simulate locally.
– Use received messages to decorate level r nodes---to determine label, 

append sender’s id at the end.
– If no message received, use ⊥.

• The decoration for node (i1,i2,i3,…,ik) in i’s tree is the value v such that 
(ik told i) that (ik-1 told ik) that …that (i1 told i2) that i1’s initial value was v.

• Decision rule for stopping case:
– Trivial
– Let W = set of all values decorating the local EIG tree.  
– If |W| = 1 decide that value, else default v0.



Example

• 3 processes, 1 failure
• Use T3,1:

1 32

312112 2313 32

λ

Process 1 Process 3Process 2

1 10

Initial values:



Example

• Process 2 is faulty, 
fails after sending to 
process 1 at round 1.

• After round 1:

1 32

312112 2313 32

λ

1 10

1 0 1 1 1⊥

Process 1 Process 3Process 2



Example

• After round 2: 1 32

312112 2313 32

λ

Process 1 Process 3Process 2

1 0 1 1 1⊥

⊥ ⊥ ⊥⊥⊥ ⊥1 111 00

1 10

p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.



Correctness and complexity
• Correctness similar to previous algorithms.
• Time:  f+1 rounds, as before.
• Messages: ≤ (f + 1) n2

• Bits:  Exponential in number of failures, O(nf+1 b) 
• Can improve as before by only relaying the first two 

messages with distinct values.
• Extension:

– The simple EIG stopping algorithm, and its optimized variant, can 
be used to tolerate worse types of failures.

– Not full Byzantine model---that will require more work…
– Rather, a restricted version of the Byzantine model, in which 

processes can authenticate messages.
– Removes ability of process to relay false information about what

other processes said.



Byzantine agreement algorithm
• Recall correctness conditions:

– Agreement: No two nonfaulty processes decide on different values.
– Validity: If all nonfaulty processes start with the same v, then v is 

the only allowable decision for nonfaulty processes.
– Termination: All nonfaulty processes eventually decide.

• Present EIG algorithm for Byzantine agreement, using:
– Exponential communication (in f)
– f+1 rounds
– n > 3f

• Expensive!
– Time bound:  Inherent.  (Lower bound)
– Number-of-processors bound:  Inherent. (Lower bound)
– Communication:  Can be improved to polynomial.  



Bad example:  n = 3, f = 1
• Consider three executions of an EIG algorithm, with any decision rule.
• α1: p1 and p2 nonfaulty, initial value 1, p3 faulty, initial value 0

– Round 1:  All truthful
– Round 2:  p3 lies, telling p1 that “p2 said 0”; all other communications are 

truthful.
– Validity requires that p1 and p2 decide 1.

• α2: p2 and p3 nonfaulty, initial value 0, p1 faulty, initial value 1
– Round 1:  All truthful
– Round 2:  p1 lies, telling p3 that “p2 said 1”; all other communications are 

truthful.
– Validity requires that p2 and p3 decide 0.

• α3: p1 nonfaulty, initial value 1, p3 nonfaulty, initial value 0, p2 faulty, 
initial value doesn’t matter. 
– Round 1:  p2 tells p1 its initial value is 1, tells p3 its initial value is 0 

(inconsistent).
– Round 2:  All truthful.

• α3  ∼1 α1, so p1 behaves the same in both, decides 1 in α3.
• α3  ∼3 α2, so p3 behaves the same in both, decides 0 in α3.
• Contradicts agreement!



Bad example
• α1: p1 and p2 nonfaulty, initial value 1, p3 faulty, initial value 0

– Round 1:  All truthful
– Round 2:  p3 lies, telling p1 that “p2 said 0”; all other communications are 

truthful.
– Validity requires that p1 and p2 decide 1.

p2

p3p1
1

1

0

2 said 0

2 said 1

1 said 13 
sa

id 
0



Bad example
• α2: p2 and p3 nonfaulty, initial value 0, p1 faulty, initial value 1

– Round 1:  All truthful
– Round 2:  p1 lies, telling p3 that “p2 said 1”; all other communications are 

truthful.
– Validity requires that p2 and p3 decide 0.

p2

p3p1
1

0

0

2 said 0

2 said 1

1 said 13 
sa

id 
0



Bad example
• α3: p1 nonfaulty, initial value 1, p3 nonfaulty, initial value 0, p2 faulty, 

initial value doesn’t matter. 
– Round 1:  p2 tells p1 its initial value is 1, tells p3 its initial value is 0 

(inconsistent).
– Round 2:  All truthful.

p2

p3p1
1

?

0

2 said 0

2 said 1

1 said 1
3 

sa
id 

0

1
1 0

0



Notes on the example
• The correct processes can tell something is wrong, but that 

doesn’t help:
– E.g., in α1, p1 sees that p2 sends 1, but p3 said that p2 said 0.
– So p1 knows that either p2 or p3 is faulty, but doesn’t know which.
– By termination, p1 has to decide something, but neither value 

works right in all cases.

• Impossibility of solving Byzantine agreement with 3 
processes, 1 failure:
– This is not a proof--- maybe there’s a non-EIG algorithm, or one 

that takes more rounds,…
– Come back to this later.



EIG algorithm for Byzantine 
agreement

• Assume n > 3f.
• Same EIG tree as before.
• Relay messages for f+1 rounds, as before.
• Decorate the tree with values from V, replacing any 

garbage messages with default value v0.
• New decision rule:

– Call the decorations val(x), where x is a node label.
– Redecorate the tree, defining newval(x).

• Proceed bottom-up.
• Leaf:  newval(x) = val(x)
• Non-leaf:  newval(x) = 

– newval of strict majority of children in the tree, if majority exists,
– v0 otherwise.

– Final decision:  newval(λ)  (newval at root)



0001111101 1 0 1001111111 1 00001111101 0 0

Example:  n = 4, f = 1
• T4,1:
• Consider a possible 

execution in which p3 is 
faulty.

• Initial values 1 1 0 0
• Round 1
• Round 2

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

Process 1 Process 2 Process 4(Process 3)

1 001

1 1 0 0 1 1 1 0 1 1 1 0

Lies



0001111101 1 0 1001111111 1 00001111101 0 0

Example:  n = 4, f = 1
• Now calculate newvals, bottom-up, choosing majority 

values, v0 = 0 if no majority.

Process 1 Process 2 Process 4(Process 3)

1 001

1 1 0 0 1 1 1 0 1 1 1 0

1 11

1 1 1 0 1 1 1 0 1 1 1 0

Corrected by taking majority



Correctness proof

• Lemma 1: If i, j, k are nonfaulty, then val(x)i
= val(x)j for every node label x ending with k.

• In example, such nodes are:

• Proof: k sends same message to i and j and 
they decorate accordingly.

1 2

λ

43

14 4132 3412 31 4313 2321 24 42



Proof, cont’d
• Lemma 2: If x ends with nonfaulty process index then ∃v ∈

V such that val(x)i = newval(x)i = v for every nonfaulty i.
• Proof: Induction on lengths of labels, bottom up.

– Basis: Leaf.
• Lemma 1 implies that all nonfaulty processes have same val(x).
• newval = val for each leaf.

– Inductive step: |x| = r ≤ f   (|x| = f+1 at leaves)
• Lemma 1 implies that all nonfaulty processes have same val(x), say v.
• We need newval(x) = v everywhere also.
• Every nonfaulty process j broadcasts same v for x at round r+1, so 

val(xj)i = v for every nonfaulty j and i.
• By inductive hypothesis, also newval(xj)I = v for every nonfaulty j and i.
• A majority of labels of x’s children end with nonfaulty process indices:

– Number of children of node x is ≥ n – f > 3f – f = 2f.
– At most f are faulty.

• So, majority rule applied by i leads to newval(x)i = v, for all nonfaulty i.



Main correctness conditions
• Validity:

– If all nonfaulty processes begin with v, then all nonfaulty
processes broadcast v at round 1, so val(j)i = v for all 
nonfaulty i, j.

– By Lemma 2, also newval(j)i = v for all nonfaulty i,j.
– Majority rule implies newval(λ)i = v for all nonfaulty i.
– So all nonfaulty i decide v.

• Termination:
– Obvious.

• Agreement:
– Requires a bit more work:



Agreement
• Path covering: Subset 

of nodes containing at 
least one node on each 
path from root to leaf:

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

• Common node: One for which all nonfaulty processes have 
the same newval.
– If a node’s label ends in nonfaulty process index, Lemma 

2 implies it’s common.
– Others might be common too.



Agreement
• Lemma 3: There exists a path covering all of whose 

nodes are common.
• Proof:  

– Let C = nodes with labels of the form xi, i nonfaulty.
– By Lemma 2, all of these are common.
– Claim these form a path covering:  

• There are at most f faulty processes.
• Each path contains f+1 labels ending with f+1 distinct indices.
• So at least one of these labels ends with a nonfaulty process index.

1 2

λ

43

14 4132 3412 31 4313 2321 24 42



Agreement
• Lemma 4: If there’s a common path covering of the 

subtree rooted at any node x, then x is common
• Proof:

– By induction, from the leaves up.
– “Common-ness” propagates upward.

• Lemma 5: The root is common.
• Proof: By Lemmas 3 and 4.

• Thus, all nonfaulty processes get the same newval(λ).
• Yields Agreement.



Complexity bounds

• As for EIG for stopping agreement:
– Time:  f+1
– Communication:  O(nf+1)

• Number of processes:  n > 3f 



Next time…
• Lower bounds for Byzantine agreement:

– Number of processors
– Bounds for connectivity, weak Byzantine agreement.
– Number of rounds

• Reading:
– Sections 6.4-6.7
– [Aguilera, Toueg]
– (Optional) [Keidar-Rajsbaum]
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