
6.852: Distributed Algorithms

Fall, 2009


Class 3




Today’s plan

•	 Algorithms in general synchronous networks (continued): 

� Shortest paths spanning tree 
� Minimum-weight spanning tree 
� Maximal independent set 

• Reading: Sections 4.3-4.5 

• Next: 
– Distributed consensus 
– Reading: Sections 5.1, 6.1-6.3 



Last time

z Lower bound on number of messages for comparison-

based leader election in a ring. 
z Leader election in general synchronous networks: 

� Flooding algorithm 
� Reducing message complexity 
� Simulation relation proof 

� Breadth-first search in general synchronous networks: 
� Marking algorithm 
� Applications: 

� Broadcast, convergecast

� Data aggregation (computation in networks)

� Leader election in unknown networks

� Determining the diameter




Termination for BFS

•	 Suppose i0 wants to know when the BFS tree is completed. 
•	 Assume each search message receives a response, parent 

or non-parent. 
–	 Easy if edges are bidirectional, harder if unidirectional. 

•	 After a node has received responses to all its search 
messages, it knows who its children are, and knows they
are all marked. 

•	 Leaves of the tree discover who they are (receive all non-
parent responses). 

•	 Starting from the leaves, fan in complete messages to i0. 
•	 Node can send complete message after: 

–	 It has receives responses to all its search messages (so it knows
who its children are), and 

–	 It has received complete messages from all its children. 



Shortest paths

• Motivation: Establish structure for efficient communication. 

– Generalization of Breadth-First Search. 
– Now edges have associated costs (weights). 

• Assume:  
– Strongly connected digraph, root i0. 
– Weights (nonnegative reals) on edges. 

• Weights represent some communication cost, e.g. latency.

– UIDs. 

– Nodes know weights of incident edges. 
– Nodes know n (need for termination). 

• Required: 
– Shortest-paths tree, giving shortest paths from i0 to every other node. 
– Shortest path = path with minimum total weight. 
– Each node should output parent, “distance” from root (by weight). 
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Shortest paths algorithm

•	 Bellman-Ford (adapted from sequential algorithm) 
•	 “Relaxation algorithm” 
•	 Each node maintains: 

– dist, shortest distance it knows about so far, from i0 
–	 parent, its parent in some path with total weight = dist 
–	 round number 

•	 Initially i0 has dist 0, all others �; parents all null 
•	 At each round, each node: 

–	 Send dist to all out-nbrs 
–	 Relaxation step: 

• Compute new dist = min(dist, minj(dj + wji)). 
• Update parent if dist changes. 

•	 Stop after n-1 rounds 
•	 Then (claim) dist contains shortest distance, parent contains 

parent in a shortest-paths tree. 
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Correctness

z Need to show that, after round n-1, for each 

process i: 
� disti = shortest distance from i0 
� parenti = predecessor on shortest path from i0 

z Proof: 
z Induction on the number r of rounds. 
z But, what statement should we prove about the 

situation after r rounds? 



Correctness

z Key invariant: After r rounds: 

� Every process i has its dist and parent corresponding to a shortest
path from i0 to i among those paths that consist of at most r hops
(edges). 

� If there is no such path, then dist = � and parent = null. 

z Proof (sketch):

� By induction on the number r of rounds.

� Base: r = 0: Immediate from initializations.

� Inductive step: Assume for r-1, show for r.


z Fix i; must show that, after round r, disti and parenti correspond to a
shortest at-most-r-hop path. 

z First, show that, if disti is finite, then it really is the distance on some at-
most-r-hop path to i, and parent is its parent on such a path. 

z LTTR---easy use of inductive hypothesis. 
z But we must still argue that disti and parenti correspond to a shortest 

at-most-r-hop path. 



Correctness

z Key invariant: After r rounds: 

� Every process i has its dist and parent corresponding to a shortest path from i0 to i 
among those paths that consist of at most r hops (edges). 

� If there is no such path, then dist = � and parent = null. 

z Proof, inductive step: 
� Assume for r-1, show for r. 
� Fix i; must show that, after round r, disti and parenti correspond to a

shortest at-most-r-hop path. 
� If disti is finite, then it really is the distance on some at-most-r-hop path to i, 

and parent is its parent on such a path. 
� Claim that disti and parenti correspond to a shortest at-most-r-hop path. 
� Any shortest at-most-r-hop path from i0 to i, when cut off at i’s predecessor 

j on the path, yields a shortest (r-1)-hop path from i0 to j. 
� By inductive hypothesis, after round r-1, for every such j, distj and parentj

correspond to a shortest at-most-(r-1)-hop path from i0 to j. 
� At round r, all such j send i their info about their shortest at-most-(r-1)-hop

paths, and process i takes this into account in calculating disti. 
� So after round r, disti and parenti correspond to a shortest at-most-r-hop

path. 



Complexity

z Complexity: 

z Time: n-1 rounds 
z Messages: (n-1) |E| 

z Worse that BFS, which has: 
z Time: diam rounds 
z Messages: |E| 

z Q: Does the time bound really depend on n, or is it O(diam)? 
z A: It’s really n, since “shortest path” can be over a path with more links. 
z Example: 

79 

i0 i 

i0 i0i0i0 

1 1 1 1 1 



Bellman-Ford Shortest-Paths 

Algorithm


•	 Will revisit Bellman-Ford shortly in asynchronous 
networks. 

•	 Gets even more expensive there. 
•	 Similar to old Arpanet routing algorithm. 



Minimum spanning tree

z Another classical problem. 
z Many sequential algorithms. 
z Construct a spanning tree, minimizing the total weight of all 

edges in the tree. 
z Assume: 

�	 Weighted undirected graph (bidirectional communication). 
z Weights are nonnegative reals. 
z Each node knows weights of incident edges. 

�	 Processes have UIDs. 
�	 Nodes know (a good upper bound on) n. 

z Required: 
�	 Each process should decide which of its incident edges are in MST

and which are not. 



Minimum spanning tree theory

•	 Graph theory definitions (for undirected graphs) 

–	 Tree: Connected acyclic graph 
–	 Forest: An acyclic graph (not necessarily connected) 
–	 Spanning subgraph of a graph G: Subgraph that includes all nodes 

of G. 
•	 Spanning tree, spanning forest. 

–	 Component of a graph: A maximal connected subgraph. 

•	 Common strategy for computing MST: 
–	 Start with trivial spanning forest, n isolated nodes. 
–	 Repeat (n-1 times): 

•	 Merge two components along an edge that connects them. 
•	 Specifically, add the minimum-weight outgoing edge (MWOE) of some 

component to the edge set of the current forest. 



Why this works:

•	 Similar argument to sequential case. 
•	 Lemma 1: Let { Ti : 1 d i d k } be a spanning forest of G. Fix any 

j, 1 d j d k . Let e be a minimum weight outgoing edge of Tj. 
Then there is a spanning tree for G that includes all the Tis and e, 
and has minimum weight among all spanning trees for G that
include all the Tis. 

•	 Proof: 
–	 Suppose not---there’s some spanning tree T for G that includes all the Tis 

and does not include e, and whose total weight is strictly less than that of 
any spanning tree that includes all the Tis and e. 

–	 Construct a new graph Tc (not a tree) by adding e to T. 
–	 Contains a cycle, which must contain another outgoing edge, ec, of Tj. 
–	 weight(ec) t weight(e), by choice of e (smallest weight). 
–	 Construct a new tree Tcc by removing ec from Tc. 
–	 Then Tcc is a spanning tree, contains all the Tis and e. 
–	 weight(Tcc) d weight(T). 
–	 Contradicts assumed properties of T. 



Minimum spanning tree algorithms 
•	 General strategy: 

–	 Start with n isolated nodes. 
–	 Repeat (n-1 times): 

• Choose some component i. 
• Add the minimum-weight outgoing edge (MWOE) of component i. 

•	 Sequential MST algorithms follow (special cases of) this 
strategy: 
–	 Dijkstra/Prim: Grows one big component by adding one more

node at each step.

– Kruskal:  Always add min weight edge globally.


•	 Distributed? 
–	 All components can choose simultaneously. 
–	 But there is a problem… 
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Minimum spanning tree

z Avoid this problem by assuming that all weights are distinct. 
z Not a serious restriction---could break ties with UIDs. 
z Lemma 2: If all weights are distinct, then the MST is unique. 
z Proof: Another cycle argument (LTTR). 

z Justifies the following concurrent strategy: 
z At each stage, suppose (inductively) that the current forest contains only 

edges from the unique MST. 
z Now several components choose MWOEs concurrently. 
z Each of these edges is in the unique MST, by Lemma 1. 
z So OK to add them all (no cycles, since all are in the same MST).


z GHS (Gallager, Humblet, Spira) algorithm

� Very influential (Dijkstra prize).

� Designed for asynchronous setting, but simplified here.

� We will revisit it in asynchronous networks.




GHS distributed MST algorithm

•	 Proceeds in phases (levels), each with O(n) rounds. 

–	 Length of phases is fixed, and known to everyone. 
–	 This is all that n is used for. 
–	 We’ll remove use of n for asynchronous algorithm. 

•	 For each k t 0, level k components form a spanning forest that is a
subgraph of the unique MST. 

•	 Each component is a tree rooted at a leader node. 
–	 Component identified by UID of leader. 
–	 Nodes in the component know which incident edges are in the tree. 

•	 Each level k component has at least 2k nodes. 
•	 Every level k+1 component is constructed from two or more level k

components. 

•	 Level 0 components: Single nodes. 
•	 Level k o level k+1: 



Level k o Level k+1

•	 Each level-k component leader finds MWOE of its 

component: 
–	 Broadcasts search (via tree edges). 
–	 Each process finds the mwoe among its own incident edges. 

• Sends test messages along non-tree edges, asking if node at the 

other end is in the same component (compare component ids). 


–	 Convergecast the min back to the leader (via tree edges). 
–	 Leader determines MWOE. 

•	 Combine level-k components using MWOEs, to obtain level
(k+1) components: 
–	 Wait long enough for all components to find MWOEs. 
–	 Leader of each level k component tells endpoint nodes of its

MWOE to add the edge for level k+1. 
–	 Each new component has t 2k+1 nodes, as claimed. 



Level k o Level k+1, cont’d

•	 Each level-k component leader finds MWOE of its component. 
•	 Combine level-k components using MWOEs, to obtain level-(k+1)

components. 

•	 Choose new leaders: 
–	 For each new, level k+1 component, there is a unique edge e that is the 

MWOE of two level k sub-components: 

e 

n edges, must have a cycle. 
Cycle can’t have length > 2, 
because weights of different 
edges on the cycle must 
decrease around the cycle. 

– Choose new leader to be the endpoint of e with the larger UID. 
–	 Broadcast leader UID to new (merged) component. 

•	 GHS terminates when there are no more outgoing edges. 



Note on synchronization

•	 This simplified version of GHS is designed to work with

component levels synchronized. 
•	 Difficulties can arise when they get out of synch (as we’ll

see). 
•	 In particular, test messages are supposed to compare

leader UIDs to determine whether endpoints are in the 
same component. 

•	 Requires that the node being queried has up-to-date UID
information. 



Minimum spanning tree
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Simplified GHS MST Algorithm

z Proof? 
z Use invariants; but this is complicated because the


algorithm is complicated.

z Complexity:


� Time: O(n log n)

� n rounds for each level

� log n levels, because there are t 2k nodes in each level k component.


� Messages: O( (n + |E|) log n) 
� Naïve analysis. 
� At each level, O(n) messages sent on tree edges, O(|E|) messages

overall for all the test messages and their responses. 
� Messages: O(n log n + |E|) 

� A surprising, significant reduction.

� Trick also works in asynchronous setting.

� Has implications for other problems, such as leader election.




O(n log n + |E|) message complexity

•	 Each process marks its incident edges as rejected when they are

discovered to lead to the same component; no need to retest them. 
•	 At each level, tests candidate edges one a a time, in order of

increasing weight, until the first one is found that leads outside (or
exhaust candidates) 

•	 Rejects all edges that are found to lead to same component. 
•	 At next level, resumes where it left off. 

•	 O(n log n + |E|) bound: 
–	 O(n) for messages on tree edges at each phase, O(n log n) total. 
–	 Test, accept (different component), reject (same component): 

•	 Amortized analysis. 
• Test-reject: Each (directed) edge has at most one test-reject, for

O(|E|) total. 
•	 Test-accept: Can accept the same directed edge several times; but at 

most one test-accept per node per level, O(n log n) total. 



Where/how did we use synchrony?


z Leader election 
z Breadth-first search 
z Shortest paths 
z Minimum spanning tree 

We will see these algorithms again

in the asynchronous setting.




Spanning tree o Leader

•	 Given any spanning tree of an undirected graph, elect a 

leader: 
–	 Convergecast from the leaves, until messages meet at a node 

(which can become the leader) or cross on an edge (choose
endpoint with the larger UID). 

–	 Complexity: Time O(n); Messages O(n) 

•	 Given any weighted connected undirected graph, with known
n, but no leader, elect a leader: 
–	 First use GHS MST to get a spanning tree, then use the

spanning tree to elect a leader. 
–	 Complexity: Time O(n log n); Messages O(n log n + |E|). 
–	 Example: In a ring, O(n log n) time and messages. 



Other graph problems… 

•	 We can define a distributed version of 
practically any graph problem: maximal 
independent set (MIS), dominating set, 
graph coloring,… 

•	 Most of these have been well studied. 
•	 For example… 



Maximal Independent Set

•	 Subset I of vertices V of undirected graph G = (V,E) is

independent if no two G-neighbors are in V. 
•	 Independent set I is maximal if no strict superset of I is

independent. 
•	 Distributed MIS problem: 

–	 Assume: No UIDs, nodes know (good upper bound on) n. 
–	 Required: 

• Compute an MIS I of the network graph. 
• Each process in I should output winner, others output loser. 

•	 Application: Wireless network transmission 
–	 A transmitted message reaches neighbors in the graph; they receive the

message if they are in “receive mode”. 
–	 Let nodes in the MIS transmit messages simultaneously, others receive. 
–	 Independence guarantees that all transmitted messages are received by 

all neighbors (since neighbors don’t transmit at the same time). 
–	 Neglecting collisions here---some strategy (backoff and retransmission, or 

coding) is needed for this. 
•	 Unsolvable by deterministic algorithm, in some graphs. 
•	 Randomized algorithm [Luby]: 



Luby’s MIS Algorithm (sketch)

•	 Each process chooses a random val in {1,2,…,n4}. 

– Large enough set so it’s very likely that all numbers are distinct. 
•	 Neighbors exchange vals. 
•	 If node i’s val > all neighbors’ vals, then process i declares

itself a winner and notifies its neighbors. 
•	 Any neighbor of a winner declares itself a loser, notifies its

neighbors. 
•	 Processes reconstruct the remaining graph, eliminating

winners, losers, and edges incident on winners and lowers. 
•	 Repeat on the remaining graph, until no nodes are left. 

•	 Theorem: If LubyMIS ever terminates, it produces an MIS. 

• Theorem: With probability 1, it eventually terminates; the


expected number of rounds until termination is O(log n).

•	 Proof: LTTR. 



Termination theorem for Luby MIS


•	 Theorem: With probability 1, Luby MIS eventually
terminates; the expected number of rounds until termination
is O(log n). 

•	 Proof: Key ideas 
–	 Define sum(i) = 6j � nbrs(i) 1/degree(j). 

•	 Sum of the inverses of the neighbors’ degrees. 
–	 Lemma 1: In one stage of Luby MIS, for each in the graph, 

the probability that i is a loser (neighbor of a winner) is t 1/8
sum(i). 

–	 Lemma 2: The expected number of edges removed from G in 
one stage is t |E| / 8. 

–	 Lemma 3: With probability at least 1/16, the number of edges
removed from G at a single stage is t |E| / 16. 



Next time

z Distributed consensus 
z Reading: Sections 5.1, 6.1-6.3 
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