
6.852: Distributed Algorithms

Fall, 2009

Class 3

Today’s plan

•	 Algorithms in general synchronous networks (continued):

� Shortest paths spanning tree
� Minimum-weight spanning tree
� Maximal independent set

• Reading: Sections 4.3-4.5

• Next:
– Distributed consensus
– Reading: Sections 5.1, 6.1-6.3

Last time

z Lower bound on number of messages for comparison-

based leader election in a ring.
z Leader election in general synchronous networks:

� Flooding algorithm
� Reducing message complexity
� Simulation relation proof

� Breadth-first search in general synchronous networks:
� Marking algorithm
� Applications:

� Broadcast, convergecast

� Data aggregation (computation in networks)

� Leader election in unknown networks

� Determining the diameter

Termination for BFS

•	 Suppose i0 wants to know when the BFS tree is completed.
•	 Assume each search message receives a response, parent

or non-parent.
–	 Easy if edges are bidirectional, harder if unidirectional.

•	 After a node has received responses to all its search
messages, it knows who its children are, and knows they
are all marked.

•	 Leaves of the tree discover who they are (receive all non-
parent responses).

•	 Starting from the leaves, fan in complete messages to i0.
•	 Node can send complete message after:

–	 It has receives responses to all its search messages (so it knows
who its children are), and

–	 It has received complete messages from all its children.

Shortest paths

• Motivation: Establish structure for efficient communication.

– Generalization of Breadth-First Search.
– Now edges have associated costs (weights).

• Assume:
– Strongly connected digraph, root i0.
– Weights (nonnegative reals) on edges.

• Weights represent some communication cost, e.g. latency.

– UIDs.

– Nodes know weights of incident edges.
– Nodes know n (need for termination).

• Required:
– Shortest-paths tree, giving shortest paths from i0 to every other node.
– Shortest path = path with minimum total weight.
– Each node should output parent, “distance” from root (by weight).

6

Shortest paths

2

6

4

9 4

3

1 27

5

10

11 5 1

8

3

Shortest paths

4

6

9

0 2

9
3

1

3

8

2
3

7
10

5

10

11 5 1

6

4

6

2

Shortest paths algorithm

•	 Bellman-Ford (adapted from sequential algorithm)
•	 “Relaxation algorithm”
•	 Each node maintains:

– dist, shortest distance it knows about so far, from i0
–	 parent, its parent in some path with total weight = dist
–	 round number

•	 Initially i0 has dist 0, all others �; parents all null
•	 At each round, each node:

–	 Send dist to all out-nbrs
–	 Relaxation step:

• Compute new dist = min(dist, minj(dj + wji)).
• Update parent if dist changes.

•	 Stop after n-1 rounds
•	 Then (claim) dist contains shortest distance, parent contains

parent in a shortest-paths tree.

Shortest paths

1

4

7

5

2
�

� 10

11 5 1
8 �6

3

6

9

0 2

� 4
3

� Round 1 (start)

Shortest paths
�

� 1

4
5

27 � � 10

� 11 � 5 � 1
� 8 0

� 9 � 4 �

�

6 0 �

3

6

0 2

3

� Round 1 (msgs)

Shortest paths
�

11 21
7
�

5
4

10�

� 11 � 5 � 1
� 8 0

� 9 4 �

6 0 2

3

6

0 2

�
� 3

� Round 1 (trans)

Shortest paths

5

2
�

11 1

4

7
10

11 5 1
8 26

3

6

9

0 2

� 4
3

� Round 2 (start)

Shortest paths
�

11 21
7
�

5
4

10�

11 11 � 5 2 1

� 8 0

� 9 4 2

6 0 2

3

6

0 2

�
� 3

� Round 2 (msgs)

Shortest paths

6
4

0 2

0 2

19 9 4 2

2
3

11 1

3

7
�

5

�10

11 11 � 5 2 1
� 8 0

�
� 3

6 Round 2 (trans)
6

Shortest paths

21
3

11 7

5

10

0 2

19 9

3

6 Round 3 (start)

3

6

4

11 5 1

8

4

2
6

Shortest paths

6
4

9

0 2

0 2

19 6
6

6 4 2

3

2
3

11 1

3

7
3

5

310

11 11 3 5 2 1

19 8 0

6 Round 3 (msgs)

Shortest paths

6
4

0 2

0 2

3

5

310
1

3

11 11 3 5 2 1

2
3

7

9 6
6

9 6 4 2

3

10

19 8 0

6 Round 3 (trans)

Shortest paths

0

9 9

3

6 Round 4 (start)

4

4

2
2

1

3

8

2
3

5

10

11 5 1

7
10

6

6

Shortest paths

6
4

0 2

3

6

0 2

9 6 9 6 4 2

3

5

2
3

10 1
7

3

310

10 11 3 5 2 1

9 8 0

6 Round 4 (msgs)

Shortest paths

6
4

0 2

0 2

3

5

310
1

3

10 11 3 5 2 1

2
3

7

9 6
6

9 6 4 2

3

10

9 8 0

6 Round 4 (trans)

Shortest paths

0

9 9

3

6 Round 5 (start)

4

4

2
2

1

3

8

2
3

5

10

11 5 1

7
10

6

6

Shortest paths

6
4

0 2

3

6

0 2

9 6 9 6 4 2

3

5

2
3

10 1
7

3

310

10 11 3 5 2 1

9 8 0

6 Round 5 (msgs)

Shortest paths

6
4

0 2

0 2

3

5

310
1

3

10 11 3 5 2 1

2
3

7

9 6
6

9 6 4 2

3

10

9 8 0

6 Round 5 (trans)

Shortest paths

5

2
3

10 1

4

7
10

11 5 1
8

4

26

3

6

9

0 2

9
3

6 End configuration

Correctness

z Need to show that, after round n-1, for each

process i:
� disti = shortest distance from i0
� parenti = predecessor on shortest path from i0

z Proof:
z Induction on the number r of rounds.
z But, what statement should we prove about the

situation after r rounds?

Correctness

z Key invariant: After r rounds:

� Every process i has its dist and parent corresponding to a shortest
path from i0 to i among those paths that consist of at most r hops
(edges).

� If there is no such path, then dist = � and parent = null.

z Proof (sketch):

� By induction on the number r of rounds.

� Base: r = 0: Immediate from initializations.

� Inductive step: Assume for r-1, show for r.

z Fix i; must show that, after round r, disti and parenti correspond to a
shortest at-most-r-hop path.

z First, show that, if disti is finite, then it really is the distance on some at-
most-r-hop path to i, and parent is its parent on such a path.

z LTTR---easy use of inductive hypothesis.
z But we must still argue that disti and parenti correspond to a shortest

at-most-r-hop path.

Correctness

z Key invariant: After r rounds:

� Every process i has its dist and parent corresponding to a shortest path from i0 to i
among those paths that consist of at most r hops (edges).

� If there is no such path, then dist = � and parent = null.

z Proof, inductive step:
� Assume for r-1, show for r.
� Fix i; must show that, after round r, disti and parenti correspond to a

shortest at-most-r-hop path.
� If disti is finite, then it really is the distance on some at-most-r-hop path to i,

and parent is its parent on such a path.
� Claim that disti and parenti correspond to a shortest at-most-r-hop path.
� Any shortest at-most-r-hop path from i0 to i, when cut off at i’s predecessor

j on the path, yields a shortest (r-1)-hop path from i0 to j.
� By inductive hypothesis, after round r-1, for every such j, distj and parentj

correspond to a shortest at-most-(r-1)-hop path from i0 to j.
� At round r, all such j send i their info about their shortest at-most-(r-1)-hop

paths, and process i takes this into account in calculating disti.
� So after round r, disti and parenti correspond to a shortest at-most-r-hop

path.

Complexity

z Complexity:

z Time: n-1 rounds
z Messages: (n-1) |E|

z Worse that BFS, which has:
z Time: diam rounds
z Messages: |E|

z Q: Does the time bound really depend on n, or is it O(diam)?
z A: It’s really n, since “shortest path” can be over a path with more links.
z Example:

79

i0 i

i0 i0i0i0

1 1 1 1 1

Bellman-Ford Shortest-Paths

Algorithm

•	 Will revisit Bellman-Ford shortly in asynchronous
networks.

•	 Gets even more expensive there.
•	 Similar to old Arpanet routing algorithm.

Minimum spanning tree

z Another classical problem.
z Many sequential algorithms.
z Construct a spanning tree, minimizing the total weight of all

edges in the tree.
z Assume:

�	 Weighted undirected graph (bidirectional communication).
z Weights are nonnegative reals.
z Each node knows weights of incident edges.

�	 Processes have UIDs.
�	 Nodes know (a good upper bound on) n.

z Required:
�	 Each process should decide which of its incident edges are in MST

and which are not.

Minimum spanning tree theory

•	 Graph theory definitions (for undirected graphs)

–	 Tree: Connected acyclic graph
–	 Forest: An acyclic graph (not necessarily connected)
–	 Spanning subgraph of a graph G: Subgraph that includes all nodes

of G.
•	 Spanning tree, spanning forest.

–	 Component of a graph: A maximal connected subgraph.

•	 Common strategy for computing MST:
–	 Start with trivial spanning forest, n isolated nodes.
–	 Repeat (n-1 times):

•	 Merge two components along an edge that connects them.
•	 Specifically, add the minimum-weight outgoing edge (MWOE) of some

component to the edge set of the current forest.

Why this works:

•	 Similar argument to sequential case.
•	 Lemma 1: Let { Ti : 1 d i d k } be a spanning forest of G. Fix any

j, 1 d j d k . Let e be a minimum weight outgoing edge of Tj.
Then there is a spanning tree for G that includes all the Tis and e,
and has minimum weight among all spanning trees for G that
include all the Tis.

•	 Proof:
–	 Suppose not---there’s some spanning tree T for G that includes all the Tis

and does not include e, and whose total weight is strictly less than that of
any spanning tree that includes all the Tis and e.

–	 Construct a new graph Tc (not a tree) by adding e to T.
–	 Contains a cycle, which must contain another outgoing edge, ec, of Tj.
–	 weight(ec) t weight(e), by choice of e (smallest weight).
–	 Construct a new tree Tcc by removing ec from Tc.
–	 Then Tcc is a spanning tree, contains all the Tis and e.
–	 weight(Tcc) d weight(T).
–	 Contradicts assumed properties of T.

Minimum spanning tree algorithms
•	 General strategy:

–	 Start with n isolated nodes.
–	 Repeat (n-1 times):

• Choose some component i.
• Add the minimum-weight outgoing edge (MWOE) of component i.

•	 Sequential MST algorithms follow (special cases of) this
strategy:
–	 Dijkstra/Prim: Grows one big component by adding one more

node at each step.

– Kruskal: Always add min weight edge globally.

•	 Distributed?
–	 All components can choose simultaneously.
–	 But there is a problem…

Can get cycles:

b

c

a

1

1

1

Minimum spanning tree

z Avoid this problem by assuming that all weights are distinct.
z Not a serious restriction---could break ties with UIDs.
z Lemma 2: If all weights are distinct, then the MST is unique.
z Proof: Another cycle argument (LTTR).

z Justifies the following concurrent strategy:
z At each stage, suppose (inductively) that the current forest contains only

edges from the unique MST.
z Now several components choose MWOEs concurrently.
z Each of these edges is in the unique MST, by Lemma 1.
z So OK to add them all (no cycles, since all are in the same MST).

z GHS (Gallager, Humblet, Spira) algorithm

� Very influential (Dijkstra prize).

� Designed for asynchronous setting, but simplified here.

� We will revisit it in asynchronous networks.

GHS distributed MST algorithm

•	 Proceeds in phases (levels), each with O(n) rounds.

–	 Length of phases is fixed, and known to everyone.
–	 This is all that n is used for.
–	 We’ll remove use of n for asynchronous algorithm.

•	 For each k t 0, level k components form a spanning forest that is a
subgraph of the unique MST.

•	 Each component is a tree rooted at a leader node.
–	 Component identified by UID of leader.
–	 Nodes in the component know which incident edges are in the tree.

•	 Each level k component has at least 2k nodes.
•	 Every level k+1 component is constructed from two or more level k

components.

•	 Level 0 components: Single nodes.
•	 Level k o level k+1:

Level k o Level k+1

•	 Each level-k component leader finds MWOE of its

component:
–	 Broadcasts search (via tree edges).
–	 Each process finds the mwoe among its own incident edges.

• Sends test messages along non-tree edges, asking if node at the

other end is in the same component (compare component ids).

–	 Convergecast the min back to the leader (via tree edges).
–	 Leader determines MWOE.

•	 Combine level-k components using MWOEs, to obtain level
(k+1) components:
–	 Wait long enough for all components to find MWOEs.
–	 Leader of each level k component tells endpoint nodes of its

MWOE to add the edge for level k+1.
–	 Each new component has t 2k+1 nodes, as claimed.

Level k o Level k+1, cont’d

•	 Each level-k component leader finds MWOE of its component.
•	 Combine level-k components using MWOEs, to obtain level-(k+1)

components.

•	 Choose new leaders:
–	 For each new, level k+1 component, there is a unique edge e that is the

MWOE of two level k sub-components:

e

n edges, must have a cycle.
Cycle can’t have length > 2,
because weights of different
edges on the cycle must
decrease around the cycle.

– Choose new leader to be the endpoint of e with the larger UID.
–	 Broadcast leader UID to new (merged) component.

•	 GHS terminates when there are no more outgoing edges.

Note on synchronization

•	 This simplified version of GHS is designed to work with

component levels synchronized.
•	 Difficulties can arise when they get out of synch (as we’ll

see).
•	 In particular, test messages are supposed to compare

leader UIDs to determine whether endpoints are in the
same component.

•	 Requires that the node being queried has up-to-date UID
information.

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

9

11

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

ok

ok

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

9

k

i

j

10

a
g

d
4

e

f

3 7

c

12 5

1
0

8

2

13

11

6
 h

b

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Simplified GHS MST Algorithm

z Proof?
z Use invariants; but this is complicated because the

algorithm is complicated.

z Complexity:

� Time: O(n log n)

� n rounds for each level

� log n levels, because there are t 2k nodes in each level k component.

� Messages: O((n + |E|) log n)
� Naïve analysis.
� At each level, O(n) messages sent on tree edges, O(|E|) messages

overall for all the test messages and their responses.
� Messages: O(n log n + |E|)

� A surprising, significant reduction.

� Trick also works in asynchronous setting.

� Has implications for other problems, such as leader election.

O(n log n + |E|) message complexity

•	 Each process marks its incident edges as rejected when they are

discovered to lead to the same component; no need to retest them.
•	 At each level, tests candidate edges one a a time, in order of

increasing weight, until the first one is found that leads outside (or
exhaust candidates)

•	 Rejects all edges that are found to lead to same component.
•	 At next level, resumes where it left off.

•	 O(n log n + |E|) bound:
–	 O(n) for messages on tree edges at each phase, O(n log n) total.
–	 Test, accept (different component), reject (same component):

•	 Amortized analysis.
• Test-reject: Each (directed) edge has at most one test-reject, for

O(|E|) total.
•	 Test-accept: Can accept the same directed edge several times; but at

most one test-accept per node per level, O(n log n) total.

Where/how did we use synchrony?

z Leader election
z Breadth-first search
z Shortest paths
z Minimum spanning tree

We will see these algorithms again

in the asynchronous setting.

Spanning tree o Leader

•	 Given any spanning tree of an undirected graph, elect a

leader:
–	 Convergecast from the leaves, until messages meet at a node

(which can become the leader) or cross on an edge (choose
endpoint with the larger UID).

–	 Complexity: Time O(n); Messages O(n)

•	 Given any weighted connected undirected graph, with known
n, but no leader, elect a leader:
–	 First use GHS MST to get a spanning tree, then use the

spanning tree to elect a leader.
–	 Complexity: Time O(n log n); Messages O(n log n + |E|).
–	 Example: In a ring, O(n log n) time and messages.

Other graph problems…

•	 We can define a distributed version of
practically any graph problem: maximal
independent set (MIS), dominating set,
graph coloring,…

•	 Most of these have been well studied.
•	 For example…

Maximal Independent Set

•	 Subset I of vertices V of undirected graph G = (V,E) is

independent if no two G-neighbors are in V.
•	 Independent set I is maximal if no strict superset of I is

independent.
•	 Distributed MIS problem:

–	 Assume: No UIDs, nodes know (good upper bound on) n.
–	 Required:

• Compute an MIS I of the network graph.
• Each process in I should output winner, others output loser.

•	 Application: Wireless network transmission
–	 A transmitted message reaches neighbors in the graph; they receive the

message if they are in “receive mode”.
–	 Let nodes in the MIS transmit messages simultaneously, others receive.
–	 Independence guarantees that all transmitted messages are received by

all neighbors (since neighbors don’t transmit at the same time).
–	 Neglecting collisions here---some strategy (backoff and retransmission, or

coding) is needed for this.
•	 Unsolvable by deterministic algorithm, in some graphs.
•	 Randomized algorithm [Luby]:

Luby’s MIS Algorithm (sketch)

•	 Each process chooses a random val in {1,2,…,n4}.

– Large enough set so it’s very likely that all numbers are distinct.
•	 Neighbors exchange vals.
•	 If node i’s val > all neighbors’ vals, then process i declares

itself a winner and notifies its neighbors.
•	 Any neighbor of a winner declares itself a loser, notifies its

neighbors.
•	 Processes reconstruct the remaining graph, eliminating

winners, losers, and edges incident on winners and lowers.
•	 Repeat on the remaining graph, until no nodes are left.

•	 Theorem: If LubyMIS ever terminates, it produces an MIS.

• Theorem: With probability 1, it eventually terminates; the

expected number of rounds until termination is O(log n).

•	 Proof: LTTR.

Termination theorem for Luby MIS

•	 Theorem: With probability 1, Luby MIS eventually
terminates; the expected number of rounds until termination
is O(log n).

•	 Proof: Key ideas
–	 Define sum(i) = 6j � nbrs(i) 1/degree(j).

•	 Sum of the inverses of the neighbors’ degrees.
–	 Lemma 1: In one stage of Luby MIS, for each in the graph,

the probability that i is a loser (neighbor of a winner) is t 1/8
sum(i).

–	 Lemma 2: The expected number of edges removed from G in
one stage is t |E| / 8.

–	 Lemma 3: With probability at least 1/16, the number of edges
removed from G at a single stage is t |E| / 16.

Next time

z Distributed consensus
z Reading: Sections 5.1, 6.1-6.3

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

