6.852: Distributed Algorithms Fall, 2009

Class 2

Today's plan

- Leader election in a synchronous ring:
- Lower bound for comparison-based algorithms.
- Basic computation in general synchronous networks:
- Leader election
- Breadth-first search
- Broadcast and convergecast
- Reading: Sections 3.6, 4.1-4-2
- Next time:
- Shortest paths
- Minimum spanning tree
- Maximal independent set
- Reading: Sections 4.3-4.5

Last time

- Model for synchronous networks
- Leader election problem, in simple ring networks
- Two algorithms:
- [LeLann], [Chang, Roberts]
- Pass UID tokens one way, elect max
- Proofs, using invariants
- Time complexity: n (or 2 n for halting, unknown size)
- Communication (message) complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- [Hirshberg, Sinclair]
- Send UID tokens to successively-doubled distances, in both directions.
- Message complexity: O(n log n)
- Time complexity: O(n) (dominated by last phase)

Last time

- Q: Can the message complexity be lowered still more?
- Non-comparison-based algorithms
- Wait quietly until it's your "turn", determined by UID.
- Message complexity: O(n)
- Time complexity: $O\left(u_{\text {min }} n\right.$), or $O\left(n 2^{\text {umin }}\right)$ if n is unknown

Lower bounds for leader election

- Q:Can we get lower time complexity?
- Easy $\mathrm{n} / 2$ lower bound (informal):
- Suppose an algorithm always elects a leader in time $<n / 2$.
- Consider two separate rings of size n (n odd), R_{1} and R_{2}.
- Algorithm elects processes i_{1} and i_{2}, each in time $<n / 2$.

- Now cut R_{1} and R_{2} at points furthest from the leaders, paste them together to form a new ring R of size $2 n$.
- Then in R, both i_{1} and i_{2} get elected, because the time it takes for them to get elected is insufficient for information about the pasting to propagate from the pasting points to i_{1} and i_{2}.

Lower bounds for leader election

- Q: Can we get lower message complexity?
- More difficult $\Omega(\mathrm{n} \log \mathrm{n})$ lower bound.
- Assumptions
- Comparison-based algorithm
- Unique start state (except for UID), deterministic.

Comparison-based algorithms

- All decisions determined only by relative order of UIDs:
- Identical start states, except for UID.
- Manipulate UIDs only by copying, sending, receiving, and comparing them ($<,=,>$).
- Can use results of comparisons to decide what to do:
- State transition
- What (if anything) to send to neighbors
- Whether to elect self leader

Lower bound proof: Overview

- For any n, there is a ring R_{n} of size n such that in R_{n}, any leader election algorithm has:
- $\Omega(n)$ "active" rounds (in which messages are sent).
- $\Omega(n / i)$ msgs sent in active round i (for $i>\sqrt{ } n$).
- Thus, $\Omega(\mathrm{n} \log \mathrm{n}) \mathrm{msgs}$ total.
- Choose ring R_{n} with a great deal of symmetry in ordering pattern of UIDs.
- For $\mathrm{n}=$ power of 2: Bit-reversal rings.
- For general n: c-symmetric rings.
- Key lemma: Processes whose neighborhoods "look the same" act the same, until information from outside their neighborhoods reaches them.
- Need many active rounds to break symmetry.

Lower bound proof: Definitions

- A round is active if some (non-null) message is sent in the round.
- k-neighborhood of a process: The $2 \mathrm{k}+1$ processes within distance k.
- $\left(u_{1}, u_{2}, \ldots, u_{k}\right) \&\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ are order-equivalent provided that $u_{i} \leq u_{j}$ iff $v_{i} \leq v_{j}$ for all i, j.
- Implies same (<, =, >) relationships for all corresponding pairs.
- Example: (1 36527 9) vs. (2 798410 11)
- Two process states s and t correspond with respect to $\left(u_{1}, u_{2}, \ldots, u_{k}\right) \&\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ if they are identical except that occurrences of u_{i} in s are replaced by v_{i} in t for all i.
- Analogous definition for corresponding messages.

Lower bound proof: Key Lemma

- Lemma: Suppose A is a comparison-based algorithm on a synchronous ring network. Suppose i and j are processes whose sequences of UIDs in their kneighborhoods are order-equivalent.
Then at any point after $\leq k$ active rounds, the states of i and j correspond with respect to their k-neighborhoods' UID sequences.
- That is, processes with order-equivalent k-neighborhoods are indistinguishable until after "enough" active rounds.
- Enough: Information has had a chance to reach the processes from outside the k-neighborhoods.
- Example: 5 and 8 have order-equivalent 3neighborhoods, so must remain in corresponding states through 3 active rounds.

Lower bound proof: Key lemma

- Lemma: Suppose A is a comparison-based algorithm on a synchronous ring network. Suppose i and j are processes whose sequences of UIDs in their k neighborhoods are order-equivalent.
Then at any point after $\leq k$ active rounds, the states of i and j correspond with respect to their k-neighborhoods' UID sequences.
- Proof:
- Induction on $r=$ number of completed rounds.
- Base: $r=0$.
- Start states of i and j are identical except for UIDs.
- Correspond with respect to k-neighborhoods for every $k \geq 0$.
- Inductive step: Assume for r-1, show for r.

Key lemma

- Lemma: Suppose i and j have order-equivalent k-neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states, with respect to their k-neighborhoods.
- Proof, inductive step:
- Assume true after round r-1, for all i,j,k.
- Prove true after round r, for all i, j, k.
- Fix i,j,k, where i and j have order-equivalent k-neighborhoods.
- Assume i $=\mathrm{j}$ (trivial otherwise).
- Assume at most k of first r rounds are active.
- We must show that, after r rounds, i and j are in corresponding states with respect to their k-neighborhoods.
- By inductive hypothesis, after r-1 rounds, i and jare in corresponding states with respect to their k-neighborhoods.
- If neither i nor j receives a non-null message at round r, they make corresponding transitions, to corresponding states (with respect to their k-neighborhoods).
- So assume at least one of i, j receives a message at round r.

Key lemma

- Lemma: Suppose i and j have order-equivalent k-neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states, with respect to their k-neighborhoods.
- Inductive step, cont'd:
- So assume at least one of i, j receives a message at round r.
- Then round r is active, and the first $r-1$ rounds include at most $k-1$ active rounds.
- (k-1)-nbhds of $i-1$ and $j-1$ are order-equivalent, since they are included within the k-neighborhoods of i and j .
- By inductive hypothesis, after r-1 rounds:
- $i-1$ and $j-1$ are in corresponding states wrt their ($k-1$)-neighborhoods, and thus wrt the k-neighborhoods of i and j.
- Similarly for $\mathrm{i}+1$ and $\mathrm{j}+1$.
- Thus, messages from $\mathrm{i}-1$ to i and from $\mathrm{j}-1$ to j correspond.
- Similarly for msgs from $\mathrm{i}+1$ to i and from $\mathrm{j}+1$ to j .
- So i and j are in corresponding states and receive corresponding messages, so make corresponding transitions and end up in corresponding states.

Lower bound proof

- So, we have shown that many active rounds are needed to break symmetry, if there are large order-equivalent neighborhoods.
- It remains to show:
- There exist rings with many, and large, order-equivalent neighborhoods.
- This causes large communication complexity.
- First, see how order-equivalent neighborhoods cause large communication complexity...

Lower bound proof

- Corollary 1: Suppose A is a comparison-based leaderelection algorithm on a synchronous ring network, and k is an integer such that for any process i, there is a distinct process j such that i and j have order-equivalent k neighborhoods. Then A has more than k active rounds.
- Proof: By contradiction.
- Suppose A elects in at most k active rounds.
- By assumption, there is a distinct process j with an orderequivalent k-neighborhood.
- By Key Lemma, i and j are in corresponding states, so j is also elected-a contradiction.

Lower bound proof

- Corollary 2: Suppose A is a comparison-based algorithm on a synchronous ring network, and k and m are integers such that the k-neighborhood of any process is orderequivalent to that of at least $m-1$ other processes. Then at least m messages are sent in A's $\mathrm{k}^{\text {th }}$ active round.
- Proof:
- By definition, some process sends a message in the $k^{\text {th }}$ active round.
- By assumption, at least m-1 other processes have order-equivalent k-neighborhoods.
- By the Key Lemma, immediately before this round, all these processes are in corresponding states. Thus, they all send messages in this round, so at least m messages are sent.

Highly symmetric rings

- That's how order-equivalent neighborhoods yield high communication complexity.
- Now, show existence of rings with many, large orderequivalent neighborhoods.
- For powers of 2: Bit-reversal rings
- UID is bit-reversed process number.
- Example:

- For every segment of length $\mathrm{n} / 2^{\mathrm{b}}$, there are (at least) 2^{b} orderequivalent segments (including original segment).
- So for every process i, there are at least n/4k processes (including i) with order-equivalent k -neighborhoods, for $\mathrm{k}<\mathrm{n} / 4$.
- More than $\mathrm{n} / 8$ active rounds.
- Number of messages $\geq n / 4+n / 8+n / 12+\ldots+2=\Omega(n \log n)$

C-symmetric rings

- c-symmetric ring: For every I such that $\sqrt{ } \mathrm{n}<\mathrm{I}<\mathrm{n}$, and every sequence S of length I in the ring, there are at least $L \mathrm{cn} / \mathrm{I}$ Jorder-equivalent occurrences.
- [Frederickson-Lynch] There exists c such that for every positive integer n, there is a c-symmetric ring of size n.
- Given c-symmetric ring, argue similarly to before.

General Synchronous Networks

General synchronous networks

- Not just rings, but arbitrary digraphs.

- Basic tasks, such as broadcasting messages, collecting responses, setting up communication structures.
- Basic algorithms.
- No lower bounds.
- Algorithms are simplified versions of algorithms that work in asynchronous networks. We'll revisit them in asynchronous setting.

General synchronous network

 assumptions- Digraph G = (V,E):
- $V=$ set of processes
- $E=$ set of communication channels
- distance(i,j) = shortest distance from i to j
- diam = max distance(i,j) for all i,j
- Assume: Strongly connected (diam is finite), UIDs
- Set M of messages
- Each process has states, start, msgs, trans, as before.
- Processes communicate only over digraph edges.
- Generally don't know the entire network, just local neighborhood.
- Local names for neighbors.
- No particular order for neighbors, in general.
- But (technicality) if incoming and outgoing edges connect to same neighbor, the names are the same (so the node "knows" this).

Leader election in general synchronous networks

- Assume:
- Use UIDs with comparisons only.
- No constraints on which UIDs appear, or where they appear in the graph.
- Processes know (upper bound on) graph diameter.
- Required: Everyone should eventually set status \in \{leader, non-leader\}, exactly one leader.
- Show basic flooding algorithm, sketch proof using invariants, show optimized version, sketch proof by relating it to the basic algorithm.
- Basic flooding algorithm:
- Every round: Send max UID seen to all neighbors.
- Stop after diam rounds.
- Elect self iff own UID is max seen.

Leader election in general synchronous networks

- states
- u, initially UID
- max-uid, initially UID
- status $\in\{$ unknown, leader, not-leader\}, initially unknown
- rounds, initially 0
- msgs
- if rounds < diam send max-uid to all out-nbrs
- trans
- increment round
- max-uid := max (max-uid, UIDs received)
- if round = diam then
- status := leader if max-uid = u, not-leader otherwise

Leader election in general network

Leader election in general network

- Basic flooding algorithm (summary):
- Assume diameter is known (diam).
- Every round: Send max UID seen to all neighbors.
- Stop after diam rounds.
- Elect self iff own UID is max seen.
- Complexity:
- Time complexity (rounds): diam
- Message complexity: diam |E|
- Correctness proof?

Key invariant

- Invariant: After round r, if distance $(i, j) \leq r$ then maxuid $_{j} \geq$ UID $_{\mathrm{i}}$.
- Proof:
- Induction on r.
- Base: $r=0$
- distance $(\mathrm{i}, \mathrm{j})=0$ implies $\mathrm{i}=\mathrm{j}$, and max-uid ${ }_{i}=$ UID $_{\mathrm{i}}$.
- Inductive step: Assume for r-1, prove for r.
- If distance $(i, j) \leq r$ then there is a node k in in-nbrs ${ }_{j}$ such that distance $(\mathrm{i}, \mathrm{k}) \leq \mathrm{r}-1$.
- By inductive hypotheses, after round $r-1$, max-uid $_{k} \geq$ UID $_{i}$.
- Since k sends its max to j at round r, max-uid ${ }_{j} \geq$ UID $_{i}$ after round r.

Reducing the message complexity

- Slightly optimized algorithm:
- Don't send same UID twice.
- New state var: new-info: Boolean, initially true
- Send max-uid only if new-info = true
- new-info := true iff max UID received > max-uid

Leader election in general network

Leader election in general network

- Slightly optimized algorithm (summary):
- Don't send same UID twice
- New state variable: new-info: Boolean, initially true
- Send max-uid just when new-info = true
- new-info := true iff max UID received > max-uid
- Can improve communication cost drastically, though not the worst-case bound, diam |E|.
- Correctness Proof?
- As before, or:
- Can use another important proof method for distributed algorithms: simulation relations.

Simulation relation

- Relates new algorithm formally to an original one that has already been proved correct.
- Correctness then carries over to new algorithm.
- Often used to show correctness of optimized algorithms.
- Can repeat in several stages, adding more optimizations.
- "Run the two algorithms side by side."
- Define simulation relation between states of the two algorithms:
- Satisfied by start states.
- Preserved by every transition.
- Outputs should be the same in related states.

Simulation relation for the optimized algorithm

- Key invariant of the optimized algorithm:
- If $i \in$ in-nbrs $_{j}$ and max-uid ${ }_{i}>$ max-uid $_{j}$ then new-info ${ }_{i}=$ true.
- That is, if i has better information than j has, then i is planning to send it to j on the next round.
- Prove by induction.
- Simulation relation: All state variables of the basic algorithm (all but new-info) have the same values in both algorithms.
- Start condition: By definition.
- Preserved by every transition:
- Key property: max-uids are always the same in the two algorithms.
- Consider $\mathrm{i} \in \mathrm{in}^{2}$-nbrs ${ }_{\mathrm{j}}$.
- If new-info $=$ true before the step, then the two algorithms behave the same with respect to (i,j).
- Otherwise, only the basic algorithm sends a message. However, by the invariant, max-uid ${ }_{i} \leq$ max-uid $_{j}$ before the step, and the message has no effect.

Why all these proofs?

- Distributed algorithms can be quite complicated, subtle.
- Easy to make mistakes.
- So careful reasoning about algorithm steps is generally more important than for sequential algorithms.

Other problems besides leader election...

- Breadth-first search
- Breadth-first spanning trees, shortest-paths spanning trees,...
- Minimum spanning trees
- Maximal independent sets

Breadth-first search

- Assume:
- Strongly connected digraph, UIDs.
- No knowledge of size, diameter of network.
- Distinguished source node i_{0}.
- Required: Breadth-first spanning tree, rooted at source node i_{0}.
- Branches are directed paths in the given digraph.
- Spanning: Includes every node.
- Breadth-first: Node at distance d from i_{0} appears at depth d in tree.
- Output: Each node (except i_{0}) sets a parent variable to indicate its parent in the tree.

Breadth-first search

Breadth-first search

Breadth-first search algorithm

- Mark nodes as they get incorporated into the tree.
- Initially, only i_{0} is marked.
- Round 1: i_{0} sends search message to out-nbrs.
- At every round: An unmarked node that receives a search message:
- Marks itself.
- Designates one process from which it received search as its parent.
- Sends search to out-nbrs at the next round.
- Q: What state variables do we need?
- Q: Why does this yield a BFS tree?

Breadth-first search

Round 1 (start)

Breadth-first search

Breadth-first search

Round 1 (trans)

Breadth-first search

Round 2 (start)

Breadth-first search

Breadth-first search algorithm

- Mark nodes as they get incorporated into the tree.
- Initially, only i_{0} is marked.
- Round 1: i_{0} sends search message to out-nbrs.
- At every round: An unmarked node that receives a search message:
- Marks itself.
- Designates one process from which it received search as its parent.
- Sends search to out-nbrs at the next round.
- Yields a BFS tree because all the branches are created synchronously.
- Complexity: Time = diam + 1; Messages = |E|

BFS, bells and whistles

- Child pointers?
- Easy with bidirectional communication.
- What if not?
- Could use BFS to search for parents.
- High message bit complexity.
- Termination?
- With bidirectional communication?
- "Convergecast"
- With unidirectional communication?

Applications of BFS

- Message broadcast:
- Can broadcast a message while setting up the BFS tree ("piggyback" the message).
- Or, first establish a BFS tree, with child pointers, then use it for broadcasting.
- Can reuse the tree for many broadcasts
- Each takes time only O(diameter), messages O(n).
- For the remaining applications, assume bidirectional edges (undirected graph).

Applications of BFS

- Global computation:
- Sum, max, or any kind of data aggregation: Convergecast on BFS tree.
- Complexity: Time O(diameter); Messages O(n)/
- Leader election (without knowing diameter):
- Everyone starts BFS, determines max UID.
- Complexity: Time O(diam); Messages O(n |E|) (actually, O(diam |E|)).
- Compute diameter:
- All do BFS.
- Convergecast to find height of each BFS tree.
- Convergecast again to find max of all heights.

Next time

- More distributed algorithms in general synchronous networks:
- Shortest paths (Bellman-Ford)
- Minimum spanning trees
- Maximal independent sets (just summarize)
- Reading: Sections 4.3-4.5.

MIT OpenCourseWare
|http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

