
6.852: Distributed Algorithms
Fall, 2009

Class 2



Today’s plan
• Leader election in a synchronous ring:  

– Lower bound for comparison-based algorithms.
• Basic computation in general synchronous networks:

– Leader election
– Breadth-first search
– Broadcast and convergecast

• Reading:  Sections 3.6, 4.1-4-2
• Next time:  

– Shortest paths
– Minimum spanning tree
– Maximal independent set
– Reading:  Sections 4.3-4.5



Last time
• Model for synchronous networks
• Leader election problem, in simple ring networks
• Two algorithms:

– [LeLann], [Chang, Roberts]
• Pass UID tokens one way, elect max
• Proofs, using invariants
• Time complexity:  n (or 2n for halting, unknown size)
• Communication (message) complexity:  O(n2)

– [Hirshberg, Sinclair]
• Send UID tokens to successively-doubled distances, in both 

directions.
Message complexity:  O(n log n)
Time complexity:  O(n) (dominated by last phase)



Last time

• Q: Can the message complexity be lowered 
still more?

• Non-comparison-based algorithms
– Wait quietly until it’s your “turn”, determined by 

UID.
– Message complexity: O(n)
– Time complexity: O(umin n), or O(n 2umin) if n is 

unknown



Lower bounds for leader election
Q:  Can we get lower time complexity?
Easy n/2 lower bound (informal):

Suppose an algorithm always elects a leader in time < n/2.
Consider two separate rings of size n (n odd), R1 and R2.
Algorithm elects processes i1 and i2, each in time < n/2.

Now cut R1 and R2 at points furthest from the leaders, paste them 
together to form a new ring R of size 2n.
Then in R, both i1 and i2 get elected, because the time it takes for 
them to get elected is insufficient for information about the pasting 
to propagate from the pasting points to i1 and i2.

R1
i1 R2 i2 Ri1 i2



Lower bounds for leader election

Q:  Can we get lower message complexity?
More difficult Ω(n log n) lower bound.
Assumptions
− Comparison-based algorithm
− Unique start state (except for UID), 

deterministic.



Comparison-based algorithms

All decisions determined only by relative 
order of UIDs:
− Identical start states, except for UID.
− Manipulate UIDs only by copying, sending, 

receiving, and comparing them (<, =, >).
− Can use results of comparisons to decide what 

to do:
State transition
What (if anything) to send to neighbors
Whether to elect self leader



Lower bound proof:  Overview
For any n, there is a ring Rn of size n such that in Rn, any 
leader election algorithm has:
− Ω(n) “active” rounds (in which messages are sent).
− Ω(n/i) msgs sent in active round i (for i > √n).
− Thus, Ω(n log n) msgs total.

Choose ring Rn with a great deal of symmetry in ordering 
pattern of UIDs.

For n = power of 2:  Bit-reversal rings.
For general n:  c-symmetric rings.

Key lemma: Processes whose neighborhoods “look the 
same” act the same, until information from outside their 
neighborhoods reaches them.
− Need many active rounds to break symmetry.



A round is active if some (non-null) message is sent in 
the round.
k-neighborhood of a process:  The 2k+1 processes within 
distance k.

(u1, u2,..., uk) & (v1, v2,..., vk) are order-equivalent
provided that ui ≤ uj iff vi ≤ vj for all i,j.

Implies same (<, =, >) relationships for all corresponding pairs.
Example: (1 3 6 5 2 7 9)  vs.  (2 7 9 8 4 10 11)

Two process states s and t correspond with respect to 
(u1, u2,..., uk) & (v1, v2,..., vk) if they are identical except 
that occurrences of ui in s are replaced by vi in t for all i.
− Analogous definition for corresponding messages.

Lower bound proof:  Definitions



Lower bound proof:  Key Lemma
• Lemma: Suppose A is a comparison-based algorithm on 

a synchronous ring network.  Suppose i and j are 
processes whose sequences of UIDs in their k-
neighborhoods are order-equivalent.  
Then at any point after ≤ k active rounds, the states of i 
and j correspond with respect to their k-neighborhoods' 
UID sequences.

• That is, processes with order-equivalent k-neighborhoods 
are indistinguishable until after “enough” active rounds.

• Enough:  Information has had a chance to reach the 
processes from outside the k-neighborhoods.

• Example: 5 and 8 have order-equivalent 3-
neighborhoods, so must remain in corresponding states 
through 3 active rounds.
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Lower bound proof:  Key lemma
Lemma: Suppose A is a comparison-based algorithm on 
a synchronous ring network.  Suppose i and j are 
processes whose sequences of UIDs in their k-
neighborhoods are order-equivalent.  
Then at any point after ≤ k active rounds, the states of i 
and j correspond with respect to their k-neighborhoods' 
UID sequences.
Proof:

Induction on r = number of completed rounds.
Base: r = 0.  
− Start states of i and j are identical except for UIDs.
− Correspond with respect to k-neighborhoods for every k ≥ 0.
Inductive step:  Assume for r-1, show for r.



Key lemma
Lemma: Suppose i and j have order-equivalent k-neighborhoods.  
Then at any point after ≤ k active rounds, i and j are in corresponding 
states, with respect to their k-neighborhoods.
Proof, inductive step: 
− Assume true after round r-1, for all i,j,k.
− Prove true after round r, for all i,j,k.
− Fix i,j,k, where i and j have order-equivalent k-neighborhoods.
− Assume i ≠ j (trivial otherwise).
− Assume at most k of first r rounds are active.
− We must show that, after r rounds, i and j are in corresponding 

states with respect to their k-neighborhoods.
− By inductive hypothesis, after r-1 rounds, i and j are in 

corresponding states with respect to their k-neighborhoods.
− If neither i nor j receives a non-null message at round r, they make 

corresponding transitions, to corresponding states (with respect to 
their k-neighborhoods).

− So assume at least one of i,j receives a message at round r.



Key lemma
Lemma: Suppose i and j have order-equivalent k-neighborhoods.  
Then at any point after ≤ k active rounds, i and j are in corresponding 
states, with respect to their k-neighborhoods.

Inductive step, cont’d: 
− So assume at least one of i,j receives a message at round r.
− Then round r is active, and the first r-1 rounds include at most k-1 

active rounds.
− (k-1)-nbhds of i-1 and j-1 are order-equivalent, since they are 

included within the k-neighborhoods of i and j.
− By inductive hypothesis, after r-1 rounds:

− i-1 and j-1 are in corresponding states wrt their (k-1)-neighborhoods, 
and thus wrt the k-neighborhoods of i and j.

− Similarly for i+1 and j+1.
− Thus, messages from i-1 to i and from j-1 to j correspond.
− Similarly for msgs from i+1 to i and from j+1 to j.
− So i and j are in corresponding states and receive corresponding

messages, so make corresponding transitions and end up in 
corresponding states.



Lower bound proof

• So, we have shown that many active rounds are 
needed to break symmetry, if there are large 
order-equivalent neighborhoods.

• It remains to show:
– There exist rings with many, and large, order-equivalent 

neighborhoods.
– This causes large communication complexity.

• First, see how order-equivalent neighborhoods 
cause large communication complexity…



Lower bound proof
Corollary 1: Suppose A is a comparison-based leader-
election algorithm on a synchronous ring network, and k 
is an integer such that for any process i, there is a distinct 
process j such that i and j have order-equivalent k-
neighborhoods.  Then A has more than k active rounds.

Proof: By contradiction.
− Suppose A elects i in at most k active rounds.
− By assumption, there is a distinct process j with an order-

equivalent k-neighborhood.
− By Key Lemma, i and j are in corresponding states, so j is also 

elected—a contradiction.



Lower bound proof
Corollary 2: Suppose A is a comparison-based algorithm 
on a synchronous ring network, and k and m are integers 
such that the k-neighborhood of any process is order-
equivalent to that of at least m-1 other processes.  Then at 
least m messages are sent in A's kth active round.

Proof:
By definition, some process sends a message in the kth active round.
By assumption, at least m-1 other processes have order-equivalent 
k-neighborhoods.  
By the Key Lemma, immediately before this round, all these 
processes are in corresponding states.  Thus, they all send 
messages in this round, so at least m messages are sent.



Highly symmetric rings
That’s how order-equivalent neighborhoods yield high 
communication complexity.
Now, show existence of rings with many, large order-
equivalent neighborhoods.
For powers of 2:  Bit-reversal rings
− UID is bit-reversed process number.
− Example:  

− For every segment of length n/2b, there are (at least) 2b order-
equivalent segments (including original segment).

− So for every process i, there are at least n/4k processes (including 
i) with order-equivalent k-neighborhoods, for k < n/4.

− More than n/8 active rounds.
− Number of messages ≥ n/4 + n/8 + n/12 + ... + 2 = Ω(n log n)
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C-symmetric rings
c-symmetric ring: For every l such that √n < l < n, 
and every sequence S of length l in the ring, there 
are at least ⎣ cn/l ⎦order-equivalent occurrences.
[Frederickson-Lynch] There exists c such that for 
every positive integer n, there is a c-symmetric ring 
of size n.
Given c-symmetric ring, argue similarly to before.



General Synchronous Networks



General synchronous networks
Not just rings, but arbitrary digraphs.

Basic tasks, such as broadcasting messages, 
collecting responses, setting up communication 
structures.
Basic algorithms.
No lower bounds.
Algorithms are simplified versions of algorithms 
that work in asynchronous networks.  We’ll revisit 
them in asynchronous setting.



General synchronous network 
assumptions

• Digraph G = (V,E):
– V = set of processes
– E = set of communication channels
– distance(i,j) = shortest distance from i to j
– diam = max distance(i,j) for all i,j
– Assume:  Strongly connected (diam is finite), UIDs

• Set M of messages
• Each process has states, start, msgs, trans, as before.
• Processes communicate only over digraph edges.
• Generally don’t know the entire network, just local 

neighborhood.
• Local names for neighbors.

– No particular order for neighbors, in general.
– But (technicality) if incoming and outgoing edges connect to same 

neighbor, the names are the same (so the node “knows” this).



Leader election in general  
synchronous networks

• Assume:
– Use UIDs with comparisons only.
– No constraints on which UIDs appear, or where they appear in the 

graph.
– Processes know (upper bound on) graph diameter.

• Required: Everyone should eventually set status ∈
{leader, non-leader}, exactly one leader.

• Show basic flooding algorithm, sketch proof using 
invariants, show optimized version, sketch proof by relating 
it to the basic algorithm.

• Basic flooding algorithm:
– Every round:  Send max UID seen to all neighbors.
– Stop after diam rounds.
– Elect self iff own UID is max seen.



Leader election in general 
synchronous networks

states
− u, initially UID
− max-uid, initially UID
− status ∈ {unknown, leader, not-leader}, initially 

unknown
− rounds, initially 0

msgs
− if rounds < diam send max-uid to all out-nbrs

trans
− increment round
− max-uid := max (max-uid, UIDs received)
− if round = diam then

status := leader if max-uid = u, not-leader otherwise



Leader election in general 
network
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Leader election in general 
network
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Leader election in general 
network
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Leader election in general 
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Leader election in general 
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Leader election in general 
network
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Leader election in general 
network
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Leader election in general 
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Leader election in general 
network
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Leader election in general 
network
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Leader election in general 
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Leader election in general 
network
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Leader election in general network

• Basic flooding algorithm (summary):
– Assume diameter is known (diam).
– Every round: Send max UID seen to all neighbors.
– Stop after diam rounds.
– Elect self iff own UID is max seen.

• Complexity:
– Time complexity (rounds): diam
– Message complexity: diam |E|

• Correctness proof?



Key invariant
Invariant: After round r, if distance(i,j) ≤ r then max-
uidj ≥ UIDi. 
Proof:
− Induction on r.
− Base: r = 0 

distance(i,j) = 0 implies i = j, and max-uidi = UIDi. 

− Inductive step:  Assume for r-1, prove for r.
If distance(i,j) ≤ r then there is a node k in in-nbrsj such that 
distance(i,k) ≤ r -1.
By inductive hypotheses, after round r-1, max-uidk ≥ UIDi. 
Since k sends its max to j at round r, max-uidj ≥ UIDi after round r.



Reducing the message complexity

Slightly optimized algorithm:
− Don't send same UID twice.
− New state var:  new-info: Boolean, initially true
− Send max-uid only if new-info = true
− new-info := true iff max UID received > max-uid



Leader election in general 
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Leader election in general 
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Leader election in general 
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Leader election in general 
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Leader election in general 
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Leader election in general 
network
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Leader election in general 
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Leader election in general 
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Leader election in general 
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Leader election in general 
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Leader election in general 
network

Slightly optimized algorithm (summary):
− Don't send same UID twice
− New state variable:  new-info: Boolean, initially true
− Send max-uid just when new-info = true
− new-info := true iff max UID received > max-uid
− Can improve communication cost drastically, though not 

the worst-case bound, diam |E|.
Correctness Proof?
− As before, or:
− Can use another important proof method for distributed 

algorithms:  simulation relations.



Simulation relation
Relates new algorithm formally to an original one that has 
already been proved correct.
Correctness then carries over to new algorithm.
Often used to show correctness of optimized algorithms.
Can repeat in several stages, adding more optimizations.

“Run the two algorithms side by side.”
Define simulation relation between states of the two 
algorithms:
− Satisfied by start states.
− Preserved by every transition.
− Outputs should be the same in related states.



Simulation relation for the 
optimized algorithm

• Key invariant of the optimized algorithm:
– If i ∈ in-nbrsj and max-uidi > max-uidj then new-infoi = true.
– That is, if i has better information than j has, then i is planning to 

send it to j on the next round.
– Prove by induction.

• Simulation relation:  All state variables of the basic 
algorithm (all but new-info) have the same values in both 
algorithms.

• Start condition:  By definition.
• Preserved by every transition:

– Key property:  max-uids are always the same in the two algorithms.
– Consider i ∈ in-nbrsj.
– If new-infoi = true before the step, then the two algorithms behave 

the same with respect to (i,j).
– Otherwise, only the basic algorithm sends a message.  However, 

by the invariant, max-uidi ≤ max-uidj before the step, and the 
message has no effect.



Why all these proofs?

• Distributed algorithms can be quite 
complicated, subtle.

• Easy to make mistakes.
• So careful reasoning about algorithm steps is 

generally more important than for sequential 
algorithms.



Other problems besides leader 
election…

• Breadth-first search
• Breadth-first spanning trees, shortest-paths 

spanning trees,…
• Minimum spanning trees
• Maximal independent sets



Breadth-first search
• Assume:

– Strongly connected digraph, UIDs.
– No knowledge of size, diameter of network.
– Distinguished source node i0.

• Required: Breadth-first spanning tree, rooted at 
source node i0.
– Branches are directed paths in the given digraph.
– Spanning:  Includes every node.
– Breadth-first:  Node at distance d from i0 appears at 

depth d in tree.
– Output:  Each node (except i0) sets a parent variable to 

indicate its parent in the tree.



Breadth-first search
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Breadth-first search algorithm
Mark nodes as they get incorporated into the tree.
Initially, only i0 is marked.
Round 1: i0 sends search message to out-nbrs.
At every round: An unmarked node that receives a 
search message:

Marks itself.
Designates one process from which it received search 
as its parent.
Sends search to out-nbrs at the next round.

Q: What state variables do we need?
Q: Why does this yield a BFS tree?
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Breadth-first search
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Breadth-first search
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Breadth-first search
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Breadth-first search
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Breadth-first search algorithm
Mark nodes as they get incorporated into the tree.
Initially, only i0 is marked.
Round 1: i0 sends search message to out-nbrs.
At every round: An unmarked node that receives a 
search message:

Marks itself.
Designates one process from which it received search 
as its parent.
Sends search to out-nbrs at the next round.

Yields a BFS tree because all the branches are 
created synchronously.
Complexity: Time = diam + 1; Messages = |E|



BFS, bells and whistles

Child pointers?
− Easy with bidirectional communication.
− What if not?

Could use BFS to search for parents.
High message bit complexity.

Termination?
− With bidirectional communication?

“Convergecast”
− With unidirectional communication?



Applications of BFS
Message broadcast:
− Can broadcast a message while setting up the 

BFS tree (“piggyback” the message).
− Or, first establish a BFS tree, with child 

pointers, then use it for broadcasting.
− Can reuse the tree for many broadcasts
− Each takes time only O(diameter), messages O(n).

For the remaining applications, assume 
bidirectional edges (undirected graph).



Applications of BFS
Global computation:
− Sum, max, or any kind of data aggregation:  

Convergecast on BFS tree.
− Complexity:  Time O(diameter); Messages O(n)/

Leader election (without knowing diameter):
− Everyone starts BFS, determines max UID.
− Complexity:  Time O(diam); Messages O(n |E|) 

(actually, O( diam |E|)).
Compute diameter:
− All do BFS.
− Convergecast to find height of each BFS tree.
− Convergecast again to find max of all heights.



Next time

More distributed algorithms in general 
synchronous networks:

Shortest paths (Bellman-Ford)
Minimum spanning trees
Maximal independent sets (just summarize)

• Reading:  Sections 4.3-4.5.
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