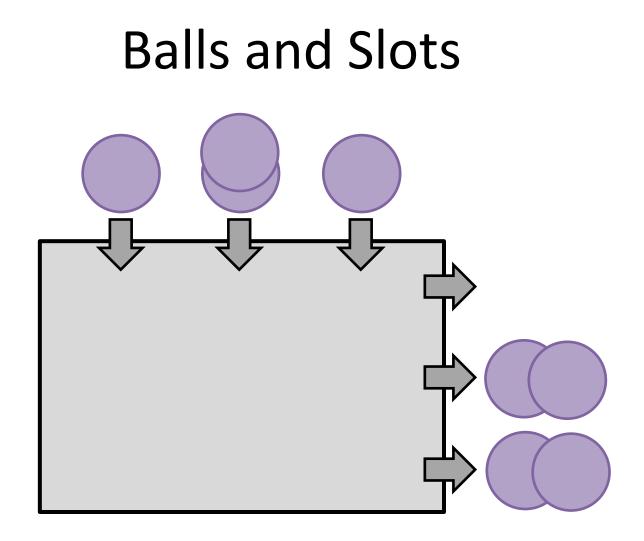
Quantum Computing with Noninteracting Particles

Alex Arkhipov

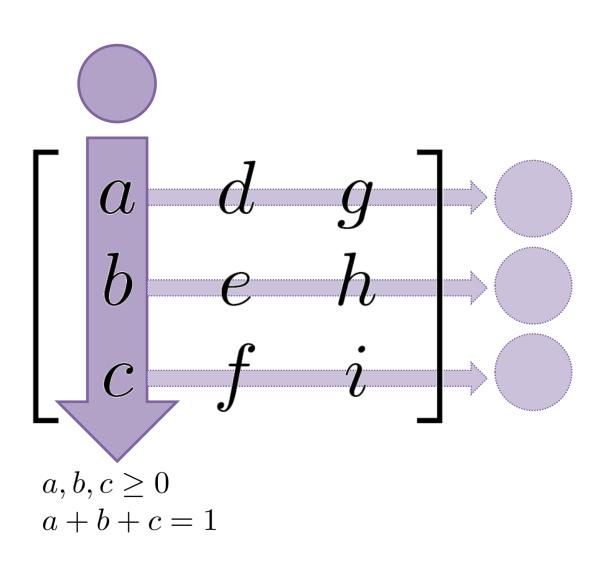
Noninteracting Particle Model

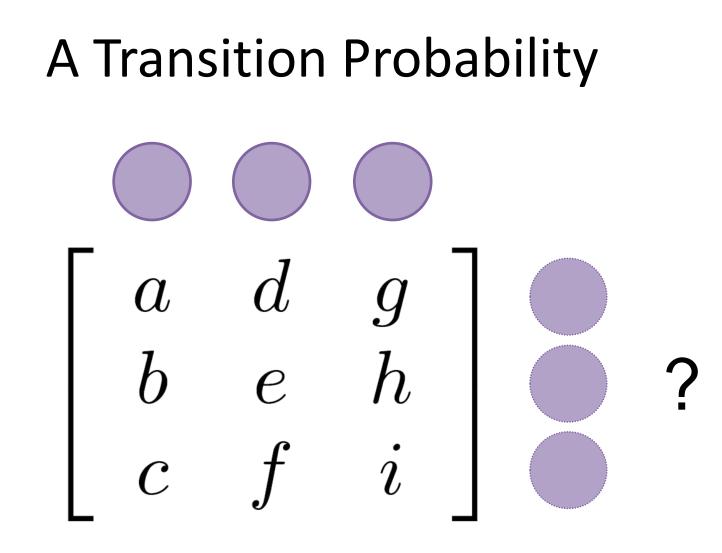
- Weak model of QC
 - Probably not universal
 - Restricted kind of entanglement
 - Not qubit-based
- Why do we care?
 - Gains with less quantum
 - Easier to build
 - Mathematically pretty

Classical Analogue

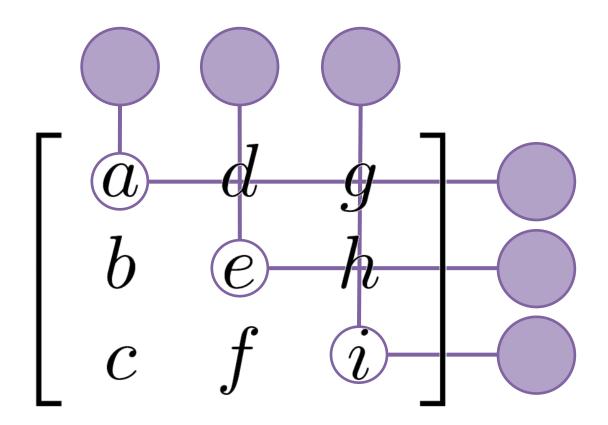


Transition Matrix

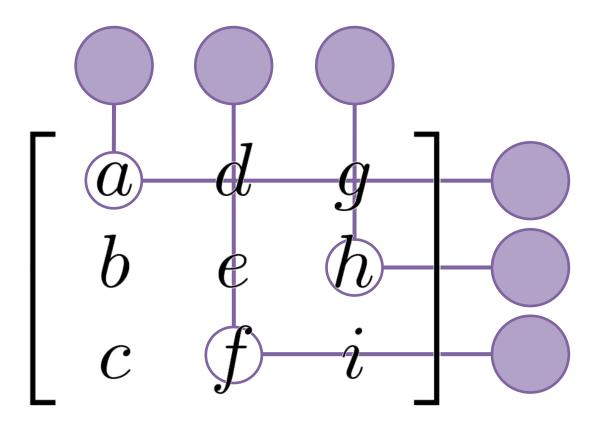




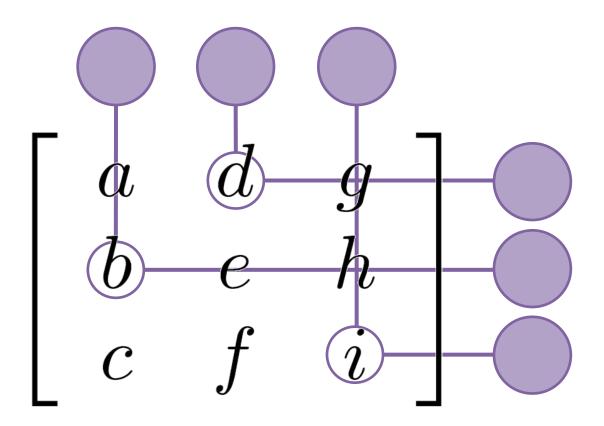
 $\Pr\left[\text{one per slot}\right] =$



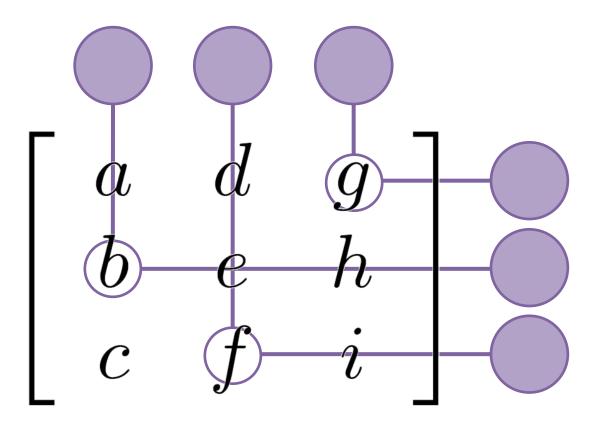
 $\Pr[\text{one per slot}] = aei +$



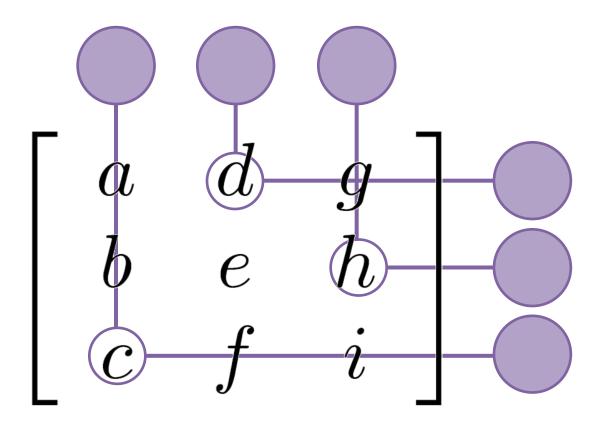
 $\Pr[\text{one per slot}] = aei + afh$



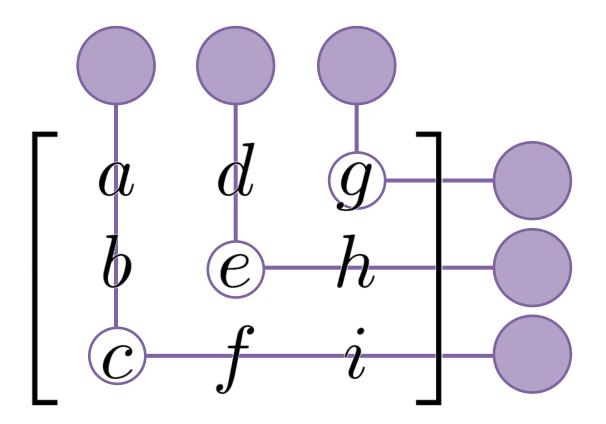
 $\Pr[\text{one per slot}] = aei + afh + bdi$



 $\Pr\left[\text{one per slot}\right] = aei + afh + bdi + bfg$



 $\Pr\left[\text{one per slot}\right] = aei + afh + bdi + bfg + cdh$



Pr [one per slot] = aei + afh + bdi + bfg + cdh + ceg= perm (M)

Probabilities for Classical Analogue

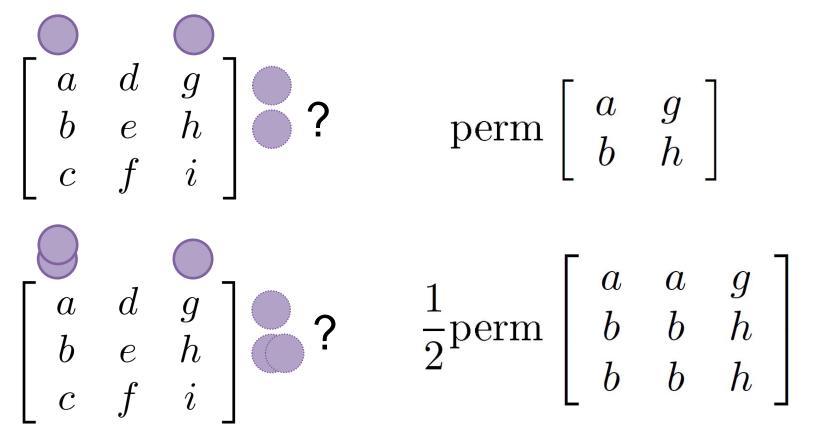
$$\Pr\left[\text{one per slot} \to \text{one per slot}\right] = \sum_{\sigma \in S_n} \prod_{i=1}^n M_{\sigma(i),i}$$

perm
$$(M) = \sum_{\sigma \in S_n} \prod_{i=1}^n M_{\sigma(i),i}$$

det $(M) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{\sigma(i),i}$

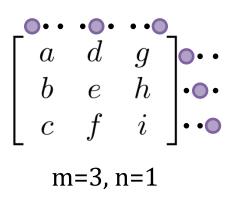
Probabilities for Classical Analogue

• What about other transitions?

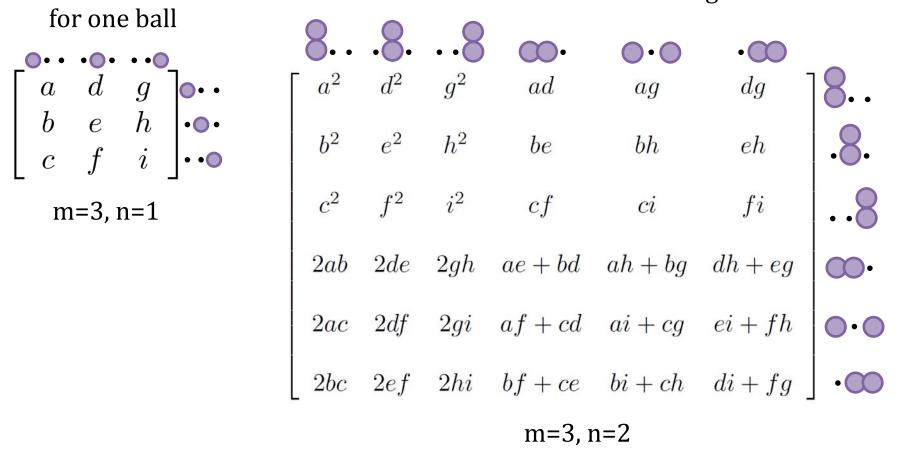


Configuration Transitions

Transition matrix for one ball



Transition matrix for two-ball configurations



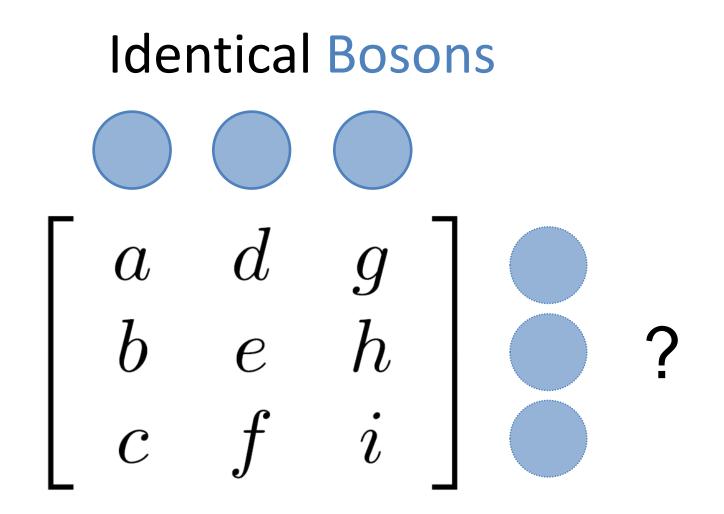
Classical Model Summary

- *n* identical balls
- *m* slots
- Choose start configuration
- Choose stochastic **transition matrix** *M*
- Move each ball as per *M*
- Look at resulting configuration

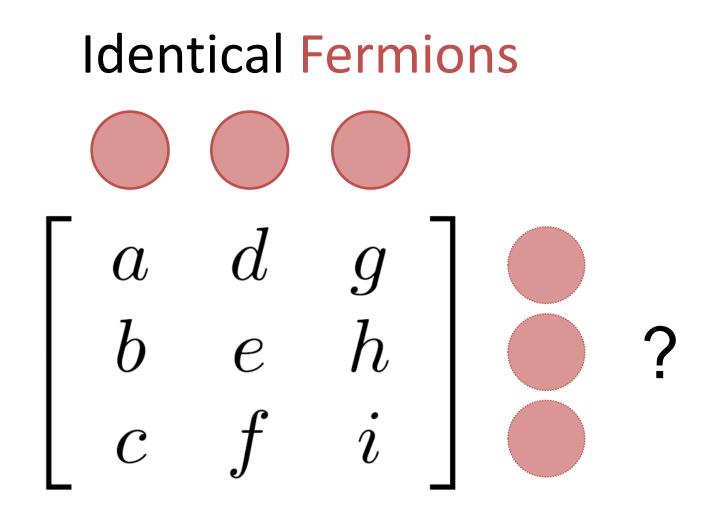
Quantum Model

Quantum Particles

• Two types of particle: Bosons and Fermions



Am [one per slot] = aei + afh + bdi + bfg + cdh + ceg= perm (M) Pr [one per slot] = $|perm (M)|^2$



Am [one per slot] = aei - afh - bdi + bfg + cdh - ceg= det (M) Pr [one per slot] = $|det (M)|^2$

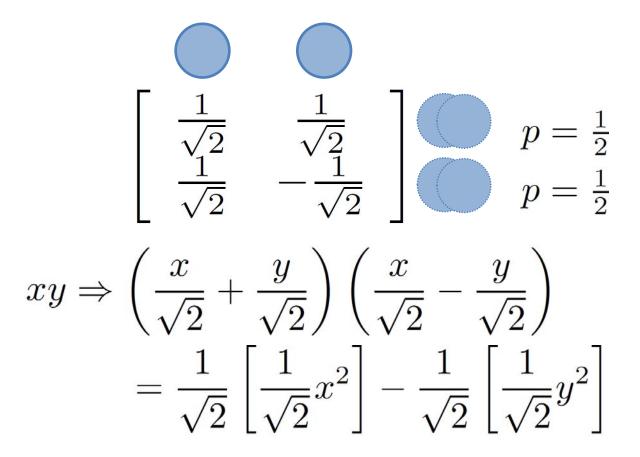
Algebraic Formalism

- Modes are single-particle basis states
 Variables x₁,..., x_m
- Configurations are multi-particle basis states • Monomials $x_1^{a_1}x_2^{a_2}\cdots x_m^{a_m}/\sqrt{a_1!\cdots a_m!}$
- Identical bosons commute
 - $x_i x_j = x_j x_i$
- Identical fermions anticommute

•
$$x_i x_j = -x_j x_i$$

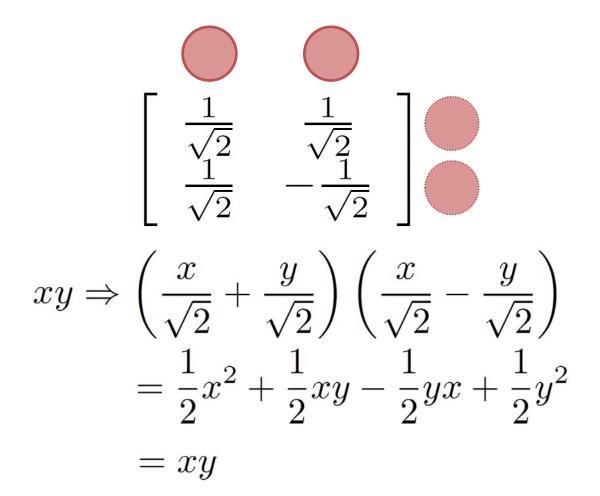
•
$$x_i^2 = 0$$

Example: Hadamarding Bosons

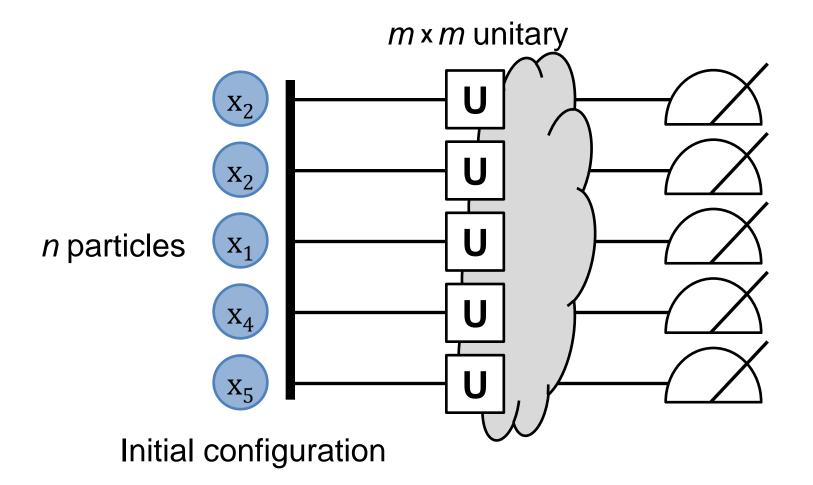


Hong-Ou-Mandel dip

Example: Hadamarding Fermions



Definition of Model



Complexity

Complexity Comparison

Particle:		
Function:		
Matrix:		
Compute probability:		
Sample:		
		Adaptiva DOD

Adaptive \rightarrow BQP [KLM '01]

Bosons Have the Hard Job

- Fermions: Easy
 - Det is in P
 - Doable in P [Valiant '01]
- Classical particles: Easy
 - Perm is #P-complete!
 - Perm approximable for ≥0 matrices [JSV '01]
- Bosons: Hard
 - With adaptive measurements, get BQP [КLM '01]
 - Not classically doable, even approximately [AA '10 in prep]

Bosons are Hard: Proof

- Classically simulate identical bosons
- Approx counting • Using NP oracle, estimate $|\operatorname{perm}(M)|^2$ Reductions Compute permanent in BPP^{NP} Perm is **#P-complete** • P^{#P} lies within BPP^{NP} Toda's Theorem Polynomial hierarchy collapses

Approximate Bosons are Hard: Proof

- Classically *approximately* simulate identical bosons
- Using NP oracle, estimate $|\text{perm}(M)|^2$ of random M with high probability

Random self-reducibility + conjectures

Approx counting

• Compute permanent in BPP^{NP}

Perm is **#P-complete**

• P^{#P} lies within BPP^{NP}

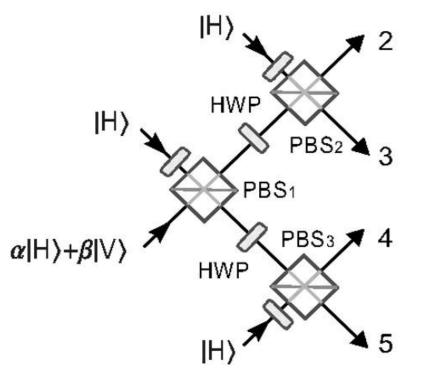
Toda's Theorem

Polynomial hierarchy collapses

Experimental Prospects

Linear Optics

• Photons and half-silvered mirrors



• Beamsplitters + phaseshifters are universal

Challenge: Do These Reliably

- Encode values into mirrors
- Generate single photons
- Have photons hit mirrors at same time
- Detect output photons

Proposed Experiment

- Use *m*=20, *n*=10
- Choose *U* at random
- Check by brute force!

6.845 Quantum Complexity Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.