
6.830 2009 Lecture 16: Parallel Databases

today's topic: parallel databases
 how to get more performance than is possible w/ one computer

--------- MOTIVATION ------------
why might one CPU/one disk not yield enough performance?
 can only scan big tables at 50 MB/sec

 can only read random rows, or probe indices, 100 times/second

 CPU needed to push data around, hash, lock, &c

who might have workloads too big for one CPU/disk?
 data-warehouse giant scans/joins/aggregations
 ebay-style OLTP, maybe 100s of updates/sec, 1000s of queries/sec

--------- 3 STRATEGIES ------------

solution 1: SMP hardware
 [diagram: CPUs, sys bus, RAM, many disks]
 each client gets a thread
 shared memory for lock table, buffer cache

SMP is very convenient for the software
 if you already used threads and latches, you're practically there

 mysql, postgresql, simpledb

 any transaction can use any disk

 see each others' updates and locks in shared mem

what kinds of workloads will benefit from SMP hardware?
 OLTP if many concurrent clients, not many locking conflicts
 keep different disks and different CPUs busy
 single big join?

 if tables striped over disks

 if we write specialized parallel join algorithms

performance goals:
 what might we expect from our money?
 e.g. if we spend 10x as much money on a fancy SMP server

 1. speedup: make existing workload take 1/10th as much time

 usually no speedup for single OLTP transaction

 can get speedup for big joins by splitting work over servers

 2. scaleup: run 10x larger job in same time
 could expect to handle more OLTP xactions concurrently on more servers
 can join bigger tables in same time
 we really want *linear* speedup and/or scaleup

 don't want to pay 10x money, get only 2x improvement

why isn't SMP hardware the final answer?
 shared memory and I/O very hard for more than a few dozen CPUs

 want any CPU to r/w any disk buffer or lock

 want any CPU to r/w any disk at 50 MB/sec

 hard to build the interconnect for this!

 16 CPU SMP currently cheap (i.e. about 16x one CPU)

 256 CPU SMP (really NUMA) possible but MUCH more expensive per CPU

solution 2: shared disk
 get rid of shared memory!
 buy network-attached disks -- a "SAN"
 and lots of independent DB servers attached to the SAN
 network allows any DB server to r/w any disk

you only have to send disk I/O over interconnect
 not CPU memory traffic as well, as in SMP

shared disk pros:
 cheaper per CPU than SMP for many CPUs

 no expensive interconnect for shared memory

 can use commodity server boxes

 s/w partially the same as for single server

 any CPU can r/w any disk

 can act like solitary srvr w/ many disks

shared disk cons:
 the network may be expensive -- 50 MB/sec per disk?
 the disks may be expensive -- need special SAN interface

** how to deal with locks?
 server 1 and server 2 want to update the same row

 central lock manager?

 stripe locks over servers?

** how to deal with dirty buffers?
 server 1 writes a page

 server 2 wants to read that page

 can't read its own cached copy

 can't read from the disk!

 server 1 must invalidate or update other cached copies

 server 2 must know to ask server 1 for latest data

 lots of inter-server lock and buffer chatter!

 in practice cannot scale shared disk beyond dozens of CPUs

 only somewhat better than SMP

 (Oracle promises infinite scalability, but anecdotal evidence

 seems to say typical 2 nodes no more than 6-8 nodes seen in

 practice, and often used mostly for redundancy)

how to do better than SMP or shared disk?
 the real problem is not the hardware, but the DB software's
 desire to r/w any disk from any CPU

solution 3: shared nothing
DON'T let s/w r/w any disk from any CPU!

 each CPU has a disk (or a few disks)

 each CPU only allowed to directly use data on its own disks

 so: commodity server/disk boxes, LAN connecting them, clever s/w

 all the cool kids are playing this game

 vertica, DB2 parallel, netezza, teradata, ad-hoc setups at facebook &c

** shared nothing questions:
 how to partition data over servers

 how to run big join and aggregate queries

 how to run OLTP queries

 how to ensure load balance

 how to deal with locks and recovery

----------- OLTP --------------

how to partition data for OLTP
 suppose you are ebay

 item(item_id, title, &c)

 bid(bid_id, amt, time, user_id, item_id)

 SELECT * FROM bid, item WHERE item_id = 3; to display an item page w/ bids
 how about this partition plan?
 items on server 1, bids on server 2
 how about this partition?

 even item_ids on server 1, odd on server 2

 even bid_ids on server 1, odd on server 2

 a good partition plan:

 assign item rows to servers with hash(item_id)

 assign bid rows to servers with hash(item_id) (same hash function)

 then displaying item page only hits one server

 can display many diff item pages in parallel w/ many servers

 and adding a bid hits only one server / one disk arm

 suppose you want to display some user info for each bid too? e.g. user name

 can't partition users by item_id!

 hash by user_id, hit on server per user

 or duplicate some user info in bid table

 usually can't find one partition plan that makes every query go to one server!
 so duplicate data, or cache, or pre-compute periodically, or buy lots of servers

suppose we spend money to increase from 10 to 100 servers
 are we going to see speedup of one query?

 are we going to be able to process a larger # of queries in one second?

when might we get linear 10x increase in performance?

what might prevent us from getting 10x?
 bad load balance! or "skew"
 1 server with lots of work, 99 servers idle, no speedup at all
 some items much more popular than others
 accidentally put too many popular items on same server
 or maybe partition plan forces us to hit more servers as # servers increases
 e.g. if bids for an item were spread over many servers

what are the options for partitioning?
 usually "horizontal": partition the rows (not the columns)
 each server responsible for some set of rows
 1. hash on some column to get server #
 2. assign ranges of keys in some column to servers
 3. round-robin inserts (essentially random)

 you can also throw in "replication" for read-mostly data, that

 are needed everywhere

when to use each kind of partitioning?
load balance? (data vs accesses)

 round-robin is perfect

 hash might work well, might not

 range might or might not
associative searches want all of same key together, i.e. bids by item_id

 hash and range work well

 round-robin does not

sequential access, e.g. all sales between May 10 and May 15

 hash and round-robin: must talk to all servers

 range: maybe talk to just one server

programmer convenience?

 range requires thought, maybe re-partitioning as data grows

 hash and round-robin are automatic

----------- OLAP --------------

what about big scan/filter/join/aggregate, for data warehousing?
 on shared-nothing parallel DB

Sam already anticipate a bit of this… let's see more…

SELECT name WHERE eyes = 'blue' and hair = 'red';
 if partitioned on eyes or hair?

 otherwise?

 (advantage in touching many machines? depends on intra-query parallelism)

select type, avg(price) ... group by type;
 if partitioned by type?
 otherwise?

 local partial partition

 report type, sum, n to querying machine

 or if many types, machine chosen by hash(type)

select ... from big, small where big.x = small.y;
 equi-join big table against small table

 send copy of small to each server

 do a hash join on each server against its partition of big table

select ... from big1, big2 where big1.x = big2.y;
 equi-join two big tables

 if big1 partitioned on x, and big2 partitioned on y, join locally

 Otherwise? I make sure I will get that property by re-partitioning tables!!

 let's re-partition both, on big1.x and big2.y

 scan big1, send each row to server[hash(x)]

 to temporary storage: memory or disk

 scan big2, send each row to server[hash(y)]

 same hash!

 we sent each entire table across the LAN

 but now every pair of rows that might join are on same server

 each server now separately uses a standard join algorithm

 Even better:
- I could apply filters first..
- I could use semi-join: send only the join column from one table, perform the semi-join, send

the
results to the other tables, and finish the join… this might move less data.

big tree of joins?
 re-partition after each join, send over network

There is a non trivial query optimization problem here:
 - multi-site execution (computation might need to change)
 - cost of network vs cpu vs disk

it's one more dimension than local query optimization...

how fast does the network have to be?
 each host needs about as fast as its disk

 entire LAN needs n*disk total throughput

 but only 1*disk to any one host

 can we buy such LANs?

 you can get 10 gbit host interfaces (i.e. 10x faster than one disk)

 you can get 10 gbit switches with modest #s of ports

 how to build a switch that can handle n*host total traffic?

 [4x4 crossbar]

 but you can't build very big+fast crossbars, maybe 16 ports

 if more? multiple levels, needs to be fat in the middle
 can't just have one switch in the middle unless it has faster links than hosts
 usually a low limit to how fast you can make the links
 so instead use more links

 C1 C2 C3 C4

 E1 E2 E3 E4

 each Ex has four hosts

 each Ex has link to each of Cx

 need to spread load from each Ex over all Cxs

suppose we spend money to increase from 10 to 100 servers
 are we going to see speedup of one big query?
 are we going to be able to join larger tables in same time?

are we going to get a 10x increase in performance?
 when might we get 10x?
 what might prevent us from getting 10x?

what about indices?
 might be able to get away with local indices

 each server just indexes its own partition

 and only uses local indices

 might help with e.g. filtering scans

 what if you are looking for one item?
 1. ask all servers to look up in local index

 2. arrange to only look for keys in partition columns, then only ask one server
 3. painfully maintain global index

how to cope with locking in a shared-nothing DB?
 do we need a global lock server?

 if a row/page is read/written, initially done on home server

 so each server can keep lock table for its own data

 don't need to lock another server's data

 no lock server required

--------- CLOSURE -----------
let's step back for a minute
 parallel programming is usually viewed as very difficult
 hard to reason about parallel algorithms

 hard to get good speedup

 hard to avoid races, maintain correctness

 has turned out to be relatively easy to use parallel DBs -- why?
 1. relational model abstracts from physical layout

 can partition &c w/o changing apps

 2. transactions and locking take care of parallel correctness

 once you're willing to program in transaction model
 3. applications often have lots of inherent parallelism

 OLTP queries on different data -- due to many independent users
 scan &c on different parts of same table

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

