

Arvind
Laboratory for Computer Science

M.I.T.

Lecture 20
http://www.csg.lcs.mit.edu/6.827

Outline

- Phase 1 compilation: Flattening the modules \Leftarrow
- Type classes
- Class Eq
- Type Bit and Class Bits
- Type Integer and Class literal
- Listn: Lists of fixed size

LPM: Straight Pipeline Solution

Bluespec code: Straight pipeline

```
mkLPM :: AsyncROM lat LuAddr LuData -> Module LPM
mkLPM rom =
    module
            (rom0, rom1, rom2) <- mk3ROMports rom
            fifoO :: FIFO Mid <- mkFIFO
            fifo1 :: FIFO Mid <- mkFIFO
            fifo2 :: FIFO Mid <- mkFIFO
            ofifo :: FIFO LuResult <- mkFIFO
            rules
```

 ... for Stages 1, 2 and Completion ...
 interface
 -- Stage 0
 luReq ipa \(=\) action rom0.read (zeroExtend ipa[31:16])
 fifoO.enq (Lookup (ipa << 16))
 luResp \(=\) ofifo.first
 luRespAck \(=\) ofifo.deq

Straight pipeline cont.

```
data Mid = Lookup IPaddr | Done LuResult
mkLPM rom =
    module
        ... state is rom0, rom1, rom2, fifo0, fifo1, fifo2, ofifo
        rules
            -- Stage 1: lookup, leaf
            when Lookup ipa <- fifoO.first,
                        Leaf res <- rom0.result
                ==> action fifoO.deq
                        rom0.ack
                                    fifol.enq (Done res)
            -- Stage 1: lookup, node
            when Lookup ipa <- fifoO.first,
                        Node res <- rom0.result
                        ==> action fifoO.deq
                        rom0.ack
                        rom1.read (addr+(zeroExt ipa[31:24]))
                        fifol.enq (Lookup (ipa << 8))
```

 interface

LPM code structure

```
mkLPM rom =
    module
            (rom0, rom1, rom2) <- mk3ROMports rom
            fifo0 <- mkFIFO
            fifo1 <- mkFIFO
            fifo2 <- mkFIFO
            ofifo <- mkFIFO
                                    Free variables of the rule
            rules
                RuleStagelLeaf(fiffo0, filfo1, rom0)
                RuleStagelNode(fifo0, fifo1, rom0, rom1)
                RuleStage2Noop(fifo1, fifo2)
                RuleStage2Leaf(fifo1, fifo2, rom1)
                RuleStage2Node(fifo1, fifo2, rom1, rom2)
                RuleCompletionNoop(fifo2, ofifo)
                RuleCompletionLeaf(fifo2, ofifo, rom2)
                RuleCompletionNode(fifo2, ofifo, rom2)
            interface
                luReq = EluReq(fifo0, rom0)
                luResp = EluResp(ofifo)
http://www.csq.lcs.mitedur/\mp@code{8zg}
```


Port replicator code structure

```
mk3ROMports rom =
    module
        tags <- mkSizedFIFO
        let
            mkPort i =
                module
                out <- mkSizedFIFO
                cnt <- mkCounter
                rules
                RuleTags(i, rom, tags, out)
                interface
                read = Eread (i, rom, tags, cnt)
                result = Eresult(out)
                ack = Eack(out, cnt)
```

 port0 <- mkPort 0 substitute
 port1 <- mkPort 1
 port2 <- mkPort 2
 interface (port0, port1, port2)

Port replicator - after step 1

Port replicator - after step 2

```
mk3ROMports rom =
    module
        tags <- mkSizedFIFO
        out0 <- mkSizedFIFO
        cnt0 <- mkCounter
        rules
            RuleTags(0, rom, tags, out0)
        let port0 = interface
                    read = Eread(0, rom, tags, cnt0)
                    result = Eresult (out0)
                    ack = Eack(out0, cnt0)
```

 port1 <- ...similarly...
 port2 <- ...similarly...
 interface (port0, port1, port2)

L20-10 Arvind
 Port replicator - final step

mk3ROMports rom $=$
module
tags <- mkSizedFIFO
out0 <- mkSizedFIFO ; cntO <- mkCounter
out1 <- mkSizedFIFO ; cnt1 <- mkCounter
out2 <- mkSizedFIFO ; cnt2 <- mkCounter rules

RuleTags(0, rom, tags, out0)
RuleTags (1, rom, tags, out1)
RuleTags (2, rom, tags, out2)
let port0 = interface
read $=$ Eread (0, rom, tags, cnt0)
result $=$ Eresult (out0)
Next step
ack $=$ Eack (out0, cnt0)
substitute
port1 $=$ interface
mk3ROMports
into mkLPM
read $=$ Eread (1, rom, tags, cnt1)
...
port2 $=$ interface ...
interface (port0, port1, port2)
[http://www.csg.lcs.mit.edu/6.827

Port replicator call

```
    (rom0, rom1, rom2) <- mk3ROMports rom
        tags <- mkSizedFIFO
        out0 <- mkSizedFIFO ; cntO <- mkCounter
        out1 <- mkSizedFIFO ; cnt1 <- mkCounter
        out2 <- mkSizedFIFO ; cnt2 <- mkCounter
        rules
            RuleTags(0, rom, tags, out0)
            RuleTags(1, rom, tags, out1)
            RuleTags(2, rom, tags, out2)
let port0 = interface
                    read = Eread(0, rom, tags, cnt0)
                    result = Eresult(out0)
substitutue
                            ack = Eack(out0, cnt0)
for ports
next
port1 = interface ...
port2 = interface ...
(rom0, rom1, rom2) = (port0, port1, port2)
```


After Port replicator call susbtitution

http://www.csg.lcs.mit.edu/6.827

LPM code after flattening

```
mkLPM rom =
    module
        tags <- mkSizedFIFO;
        outO <- mkSizedFIFO; cntO <- mkCounter;
        out1 <- mkSizedFIFO; cnt1 <- mkCounter;
        out2 <- mkSizedFIFO; cnt2 <- mkCounter;
        fifo0 <- mkFIFO; fifo1 <- mkFIFO; fifo2 <- mkFIFO;
        ofifo <- mkFIFO;
        rules
            RuleTags(0, rom, tags, out0)...
        let rom0 = interface
                    read = Eread(0, rom, tags, cnt0)
                    result = Eresult (out0)
                    ack = Eack(out0, cnt0)
            rom1 = interface ... ; rom2 = interface ...
            RuleStage1Leaf(fifo0, fifo1, rom0)...
        interface
            luReq = EluReq(fifo0, rom0)
            luResp = EluResp(ofifo)
```


Outline

- Phase 1 compilation: Flattening the modules $\sqrt{ }$
- Type classes \Leftarrow
- Class Eq
- Type Bit and Class Bits
- Type Integer and Class literal
- Listn: Lists of fixed size

Type classes

- Type classes may be seen as a systematic mechanism for overloading
- Overloading: using a common name for similar, but conceptually distinct operations
- Example:
- n1 < n2 where n1 and n2 are integers
- s1 < s2 where s1 and s2 are strings
- Distinct: integer "<" and string "<" (using, say, lexicographic ordering) may not have anything to do with each other. In particular, their implementations are likely to be totally different
- Similar: integer " $<$ " and string " $<$ " may share some common properties, such as
- transitivity ($\mathrm{a}<\mathrm{b}$ and $\mathrm{b}<\mathrm{c} \rightarrow \mathrm{a}<\mathrm{c}$)
- irreflexivity ($\mathrm{a}<\mathrm{b} \rightarrow$ not $\mathrm{b}<\mathrm{a}$)

Type classes

- A type class is a collection of types, all of which share a common set of operations with similar type signatures
- Examples:
- All types t in the "Eq" class have equality and inequality operations:

```
class Eq t where
    (==) :: t -> t -> Bool
    (/=) :: t -> t -> Bool
```

- All types t and n in the "Bits" class have operations to convert objects of type t into bit vectors of size n and back:

```
class Bits t n where
    pack :: t -> Bit n
    unpack :: Bit n m t
```

http://www.csa.lcs.mit.edu/6.827

How does a type become a member of a class?

- Membership is not automatic: a type has to be declared to be an instance of a class, and implementations of the corresponding operations must be supplied
- Until t is a member of Eq, you cannot use the "==" operation on values of type t
- Until t is a member of Bits, you cannot store them in hardware state elements like registers, memories and FIFOs
- The general way to do this is with an "instance" declaration
- A frequent shortcut is to use a "deriving" clause when declaring a type

The Bits class

- Example:

```
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
    deriving (Bits)
```

- The "deriving" clause
- Declares type Day to be an instance of the Bits class
- Defines the two associated functions

```
pack :: Day m Bit 3
unpack :: Bit 3 -> Day
```


"deriving (Bits)" for algebraic types

- Given an algebraic type such as:

```
data T = C0 ta tb | C1 tc | C2 td te tf
    deriving (Bits)
```

the canonical "pack" function created by "deriving (Bits)" produces packings as follows:

where "tag" is 0 for $\mathrm{C} 0,1$ for C 1 , and 2 for C 2 , and has enough bits to represent C2

- Thus, for:

```
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
    deriving (Bits)
```

the canonical "pack" function produces:

where "tag" is 0 for Sun, 1 for Mon, ..., 6 for Sat, and is a Bit 3

Class "(Bits)" for algebraic types

- What if we had to inter-operate with hardware that used a different representation (e.g., 0-5 for M - Sa and 6 for Su)?
- We use an explicit "instance" decl. instead of "deriving"

```
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
instance Bits Day }3\mathrm{ where
    pack Sun = 6
    pack Mon = 0
    pack Sat = 5
    unpack 0 = Mon
    unpack 6 = Sun
```


Class "(Bits)" for algebraic types

- Explicit "instance" decls. may also permit more efficient packing

```
data T = A (Bit 3) | B (Bit 5) | Ptr (Bit 31)
instance Bits T }32\mathrm{ where
    pack (A a3) = (00)::(Bit 2) ++ (zeroExtend a3)
    pack (B b5) = (01)::(Bit 2) ++ (zeroExtend b5)
    pack (Ptr p31) = (1)::(Bit 1) ++ p31
    unpack ...
```


"deriving (Bits)" for structs

- The canonical "pack" function simply bit-concatenates the packed versions of the fields:

```
struct PktHdr =
    node :: Bit 6 -- NodeID
    port :: Bit 5 -- PortID
    cos :: Bit 3 -- CoS
    dp :: Bit 2 -- DropPrecedence
    ecn :: Bool
    res :: Reserved 1
    length :: Bit 14
    crc :: Bit 32
    deriving (Bits)
```

 Bit 6 Bit 5 Bit 3 ...

Class "Eq"

- Class "Eq" contains the equality (==) and inequality (/=) operators
- "deriving (Eq)" will generate the natural versions of these operators automatically
- Are the tags equal?
- And, if so, are the corresponding fields equal?
- An "instance" declaration may be used for other meanings of equality, e.g.,
- "two pointers are equal if their bottom 20 bits are equal"
- "two values are equal if they hash to the same address"

Type "Integer" and class "Literal"

- The type "Integer" refers to pure, unbounded, mathematical integers
- and, hence, Integer is not in class Bits, which can only represent bounded quantities
- Integers are used only as compile time entities
- The class "Literal" contains a function:

$$
\text { fromInteger :: Integer } \rightarrow \text { t }
$$

Class "Literal"

- Types such as (Bit n), (Int n), (Uint n) are all members of class Literal
- Thus,

```
(fromInteger 523) :: Bit 13
```

will represent the number 523 as a 13-bit quantity

- This is how all literal numbers in the program text, such as "0" or "1", or "23", or "523" are treated, i.e., they use the systematic overloading mechanism to convert them to the desired type

Type classes for numeric types

- More generally, type classes can be seen as constraints on types
- Examples:
- For all numeric types t1, t2, t3 in the "Add" class, the value of t 3 is the sum of the values of t 1 and t 2 .
- For all numeric types t1, t2 in the "Log" class, the value of t 2 is large enough that a (Bit t2) value can represent values in the range 0 to valueOf t1-1
- These classes are used to represent/derive relationships between various "sizes" in a piece of hardware

Type classes for numeric types

- Example: bit concatenation:

$$
(++)::(\text { Add } n \mathrm{~m} k) \Rightarrow \text { Bit } n \rightarrow \text { Bit } m \rightarrow \text { Bit } k
$$

and its inverse:

$$
\text { split }::(\text { Add } n \mathrm{~m} k) \Rightarrow \text { Bit } k \rightarrow \text { (Bit } n \text {, Bit } m \text {) }
$$

Type classes for numeric types

- Example: a lookup table containing up to n elements, each of type t
- Suppose we store the elements in an array of n locations. An index into the array needs $k=\log _{2}(n)$ bits to represent values in the range 0 to $n-1$

L20-30

Outline

- Phase 1 compilation: Flattening the modules $\sqrt{ }$
- Type classes $\sqrt{ }$
- Class Eq
- Type Bit and Class Bits
- Type Integer and Class literal
- Listn: Lists of fixed size \Leftarrow

The type ListN

- Unlike the type "List t ", which represents a list of zero or more elements of type t, the type ListN n t
represents a list of exactly n elements of type t
- Advantage over List:
- Can be converted into bits \& wires, stored in registers and FIFOs, etc., since size is known
- Can assert exactly how many items there are, e.g., "The arbiter module has a list of 16 interfaces"
- Disadvantage:
- Cannot write recursive programs on ListN, if the size of the list keeps changing from call-to-call.
- Alleviated by a rich library of functions like map, foldl, zip, ... where the size transformation is known (e.g., map preserves length)

Examples of ListN functions

- map preserves length
map $::(\mathrm{a}->\mathrm{b}) \rightarrow$ ListN $n \mathrm{a} \rightarrow$ ListN n b
- foldl's result has nothing to do with the input list's length

```
foldl :: (b->a->b) ->> b -> ListN n a -> b
```

- genList creates a list 1..n, but does not need an argument telling it about n !
- The compiler figures it out from the type
genList : : ListN n Integer

Examples of ListN functions cont.

- Conversion to and from ListN and List

toList : : ListN n a -> List a
toListN :: List a -> ListN n a

