
http://www.csg.lcs.mit.edu/6.827

L13- 1

Arvind
Jan-Willem Maessen

Laboratory for Computer Science
M.I.T.

Using Monads for Input and
Output

Lecture 15

http://www.csg.lcs.mit.edu/6.827

L13-2
Arvind

Maessen

Functional Languages and I/O
z := f(x) + g(y);

In a functional language f and g can be
evaluated in any order but not in a language
with side-effects.

Consider inserting print statements (say for
debugging) in f and g.

An imperative language must take a position
on evaluation order; if there is any doubt,
must write it as

a := f(x); b := g(y); z := a+b;

I/O is all about side-effects.
Is I/O incompatible with FL?

1

http://www.csg.lcs.mit.edu/6.827

L13-3
Arvind

Maessen

What other languages do
• Execute programs in a fixed order:

(define (hello)
(princ “Hello “)
(princ “World “))

• Sequentiality simplifies the problem
• Weaker equational behavior:

(let ((a (f x))) (let ((b (g y)))
(let ((b (g y))) (let ((a (f x)))
(+ a b))) (+ a b)))

http://www.csg.lcs.mit.edu/6.827

L13-4
Arvind

MaessenPrint string
printString :: String -> ()
printString “Hello World!”

but what about

let
printString “Hello ”
printString “World!”

in ()

The string may be printed all jumbled up.

alternatives:
Output convention
Forced sequencing (Usually not available

in pure FL’s)

2

http://www.csg.lcs.mit.edu/6.827

L13-5
Arvind

Maessen

Need for Sequencing

echo :: () -> ()
echo () =

let c = getChar()
in if c==‘\n’ then ()

else let putChar c
>>>
echo ()

in ()

http://www.csg.lcs.mit.edu/6.827

L13-6
Arvind

Maessen

What about modularity?

Barriers are too coarse-grained:

myProgram () =
let input = produceAllTheInput()

consumeAndOutput input
in ()

Interleave producer and consumer
Very complex in general

3

http://www.csg.lcs.mit.edu/6.827

L13-7
Arvind

Maessen

Magic return value

getChar returns a magic value in addition to the
character indicating that further I/O is safe.

echo :: World -> World
echo world0 =

let (c, world1) = getChar world0
in if c==‘\n’ then ()

else let world2 = putChar c world1
world3 = echo world2

in world3

Used in Id and Clean

http://www.csg.lcs.mit.edu/6.827

L13-8
Arvind

Maessen

The Mind-Body Problem

RTS/OS provides the initial state of the world

main :: World -> World

Link Computation with Action:
Computation: parallel, data constrains
I/O Action: world imposes order

4

http://www.csg.lcs.mit.edu/6.827

L13-9
Arvind

MaessenRole of Program Driver
Suppose by convention

main :: [string]
main = [“Hello”, “world!”]

or

main = let a = “Hello”
b = “World!”

in [a,b]

Program is a specification of intended effect to be
performed by the program driver

The driver, a primitive one indeed, takes a string
and treats it as a sequence of commands to print.

http://www.csg.lcs.mit.edu/6.827

L13-10
Arvind

MaessenMonadic I/O in Haskell and pH
Monadic I/O treats a sequence of I/O commands
as a specification to interact with the outside world.

The program produces an actionspec , which the
program driver turns into real I/O actions.

A program that produces an actionspec remains
purely functional!

main :: IO ()
putChar :: Char -> IO ()
getChar :: IO Char

main = putChar ‘a’
is an actionspec that says that character “a” is to be
output to some standard output device

How can we sequence actionspecs?

5

http://www.csg.lcs.mit.edu/6.827

L13-11
Arvind

Maessen

Sequencing

We need a way to compose actionspecs:

(>>)) -> IO () -> IO ()

Example:

putChar ‘H’ >> putChar ‘i’ >>
putChar ‘!’ :: IO ()

putString :: String -> IO ()
putString “” = done
putString (c:cs) =
putChar c >> putString cs

:: IO (

http://www.csg.lcs.mit.edu/6.827

L13-12
Arvind

MaessenMonads: Composing Actionspecs

We need some way to get at the results of getChar

(>>=) -> (a -> IO b) -> IO b

We read the “bind” operator as follows:

x1 >>= \a -> x2
• Perform the action represented by x1,
producing a value of type “a”

• Apply function \a -> x2 to that value,
producing a new actionspec x2 :: IO b

• Perform the action represented by x2,
producing a value of type b

Example: getChar >>= putChar
the same as getChar >>= \c -> putChar c

:: IO a

6

http://www.csg.lcs.mit.edu/6.827

L13-13
Arvind

Maessen

An Example

main =
let

islc c = putChar (if (‘a’<=c)&&(c<=‘z’)
then ‘y’
else ‘n’)

in
getChar >>= islc

http://www.csg.lcs.mit.edu/6.827

L13-14
Arvind

MaessenTurning expressions into actions

return :: a -> IO a

getLine :: IO String

getLine = getChar >>= \c ->
if (c == ‘\n’) then

return “”
else getLine >>= \s ->

return (c:s)

where ‘\n’ represents the newline character

7

http://www.csg.lcs.mit.edu/6.827

L13-15
Arvind

MaessenMonadic I/O
Separate computation from sequencing

IO a: computation which does some I/O,
then produces a value of type a.

(>>) -> IO b -> IO b
(>>=) -> (a -> IO b) -> IO b
return :: a -> IO a

Primitive actionspecs:
getChar O Char
putChar har -> IO ()
openFile, hClose, ...

Monadic I/O is a clever, type-safe idea which has
become very popular in the FL community.

:: IO a
:: IO a

:: I
:: C

http://www.csg.lcs.mit.edu/6.827

L13-16
Arvind

Maessen

Syntactic sugar: do

do e -> e

do e ; dostmts -> e >> do dostmts

do p<-e ; dostmts -> e >>= \p-> do dostmts

do let p=e ; dostmts -> let p=e in do dostmts

getLine = do c <- getChar
if (c == ‘\n’) then

return “”
else
do s <- getLine

return (c:s)

8

http://www.csg.lcs.mit.edu/6.827

L13-17
Arvind

Maessen

Example: Word Count Program
type Filepath = String
data IOMode = ReadMode | WriteMode | ...
data Handle = ... implemented as built-in type

openFile :: FilePath -> IOMode -> IO Handle
hClose ndle -> IO ()

hIsEOF ndle -> IO Bool
hGetChar :: Handle -> IO Char

wc :: String -> IO (Int,Int,Int)
wc filename =

do h <- openFile filename ReadMode
(nc,nw,nl) <- wch h False 0 0 0
hClose h
return (nc,nw,nl)

:: Ha

:: Ha

http://www.csg.lcs.mit.edu/6.827

L13-18
Arvind

Maessen

Word Count Program cont.

wch :: Handle -> Bool -> Int -> Int -> Int
-> IO (Int,Int,Int)

wch h inWord nc nw nl =
do eof <- hIsEOF h

if eof then return (nc,nw,nl)
else
do c <- hGetChar h

if (c==‘\n’) then
wch h False (nc+1) nw (nl+1)

else if (isSpace c) then
wch h False (nc+1) nw nl

else if (not inWord) then
wch h True (nc+1) (nw+1) nl

else
wch h True (nc+1) nw nl

9

http://www.csg.lcs.mit.edu/6.827

L13-19
Arvind

Maessen

Calling WC
main :: IO ()

main = do [filename] <- getArgs
(nc,nw,nl) <- wc filename
putStr “
putStr (show nc)
putStr “
putStr (show nw)
putStr “
putStr (show nl)
putStr “
putStr filename
putStr “\n”

”

”

”

”

http://www.csg.lcs.mit.edu/6.827

L13-20
Arvind

Maessen

Error Handling

Monad can abort if an error occurs.
Can add a function to handle errors:

catch :: IO a -> (IOError -> IO a) -> IO a
ioError :: IOError -> IO a
fail ing -> IO a

catch echo (\err ->
fail (“I/O error: ”++show err))

:: Str

10

http://www.csg.lcs.mit.edu/6.827

L13-21
Arvind

Maessen

An Example

processFile ileName =
getContents fileName >>= \inp ->
print (processInput inp)

main =
putStrLn “Give me a file name” >>
getLine >>= \fileName ->
catch (processFile f)

(\err ->
print err >>
main)

f

http://www.csg.lcs.mit.edu/6.827

L13-22
Arvind

MaessenThe Modularity Problem
Inserting a print (say for debugging):

sqrt :: Float -> Float
sqrt x =

let
...
a = (putStrLn ...) :: IO String

in result

The binding does nothing!
The I/O has to be exposed to the caller:

sqrt :: Float -> IO Float
sqrt x =

let ...
a = (putStrLn ...) :: IO String

in a >> return result

11

http://www.csg.lcs.mit.edu/6.827

L13-23
Arvind

Maessen

Monadic I/O is Sequential

do (nc1,nw1,nl1) <- wc filename1
(nc2,nw2,nl2) <- wc filename2

return (nc1+nc2, nw1+nw2, nl1+nl2)

The two wc calls are totally independent but the
IO they perform must be sequentialized!
We can imagine doing them in parallel:

parIO :: IO a -> a

let (nc1,nw1,nl1) = parIO (wc filename1)
(nc2,nw2,nl2) = parIO (wc filename2)

in (nc1+nc2, nw1+nw2, nl1+nl2)

http://www.csg.lcs.mit.edu/6.827

L13-24
Arvind

Maessen

Overcoming the Problems

The limitations are fundamental and can be over-
come only by abandoning the purely functional
character of the language.

let (nc1,nw1,nl1) = doIO (wc filename)
writeFile filename “Hello World!\n”
(nc2,nw2,nl2) = doIO (wc filename)

in (nc1+nc2, nw1+nw2, nl1+nl2)

let (nc1,nw1,nl1) = doIO (wc filename)
writeFile filename “Hello World!\n”
(nc2,nw2,nl2) = (nc1,nw1,nl1)

in (nc1+nc2, nw1+nw2, nl1+nl2)

Suddenly program semantics are much more fuzzy!

12

http://www.csg.lcs.mit.edu/6.827

L13-25
Arvind

Maessen

Monadic sequencing

return a >>= \x -> m ≡ (\x -> m) a

m >>= \x -> return x ≡ m

(m >>= \x -> n) >>= \y -> o
≡ m >>= \x -> (n >>= \y -> o)

x ∉ FV(o)
True in every monad by definition.

A derived axiom:

m >> (n >> o) ≡ (m >> n) >> o

http://www.csg.lcs.mit.edu/6.827

L13-26
Arvind

Maessen

Monads and Let

Monadic binding behaves like let:

return a >>= \x -> m ≡ (\x -> m) a
m >>= \x -> return x ≡ m
(m >>= \x -> n) >>= \y -> o

≡ m >>= \x -> (n >>= \y -> o)
x ∉ FV(o)

let x = a in m ≡ (\x -> m) a
let x = m in x ≡ m
let y = (let x = m in n) in o

≡ let x = m in (let y = n in o)
x ∉ FV(o)

13

