

Infinite Data Structures

1. ints_from $i=i:\left(i n t s _f r o m(i+1)\right)$
nth $n(x: x s)=$ if $n==1$ then x else nth (n - 1) xs
nth 50 (ints_from 1) --> $?$
2. ones $=1$:ones
nth 50 ones --> $?$
3. $x s=[f x \mid x<-a: x s]$ nth 10 xs --> $?$

Primes: The Sieve of Eratosthenes

```
primes = sieve [2..]
sieve (x:xs) = x:(sieve (filter (p x) xs))
p x y = (y mod x)}\not=
    nth 100 primes
```


Desugaring!

- Most high-level languages have constructs whose meaning is difficult to express precisely in a direct way
- Compilers often translate ("desugar") high-level constructs into a simpler language
- Two examples:
- List comprehensions: eliminate List compressions usings maps etc.
- Pattern Matching: eliminate complex pattern matching using simple case-expressions
\qquad

List Comprehensions

List Comprehensions: Syntax

[e \quad Q] where e is an expression and 2 is a list of generators and predicates

There are three cases on Q

1. First element of Q is a generator [e | $\mathrm{x}<-\mathrm{L}, \mathrm{Q}^{\prime}$]
2. First element of Q is a predicate $\left[\begin{array}{l|l|l}\text { [} & \text { B, } Q^{\prime} \text {] }\end{array}\right.$
3. Q is empty
$\left[\begin{array}{l|l}\text { [} & \text {] }\end{array}\right.$

List Comprehensions Semantics

Rule 1.1 $[$ e $\mid x<-[], Q] \Rightarrow$
Rule $1.2\left[\mathrm{e} \mid \mathrm{x}<-\left(\mathrm{e}_{\mathrm{x}}: \mathrm{e}_{\mathrm{xs}}\right), \mathrm{Q}\right] \Rightarrow$

Rule $2.1 \quad[$ e | False, Q] $\quad \Rightarrow$
Rule 2.2 [e | True , Q] \Rightarrow
Rule 3 [e |] $\quad \Rightarrow$

Eliminating Generators

 \([\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}] \Rightarrow \operatorname{map}(\backslash \mathrm{x}->\mathrm{e}) \mathrm{xs}\)
 \([\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}] \Rightarrow \operatorname{map}(\backslash \mathrm{x}->\mathrm{e}) \mathrm{xs}\)
 [e | x <- xs, y <- ys] \(\Rightarrow\)
 [e | x <- xs, y <- ys] \(\Rightarrow\)
 where concatflattens a list:
 concat[] = []
 concat (xs:xss) = xs ++ (concat xss)
 \([\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{y}<-\mathrm{ys}, \mathrm{z}<-\mathrm{zs}] \Rightarrow\)

A More General Solution

- Flatten the list after each map.
- Start the process by turning the expression into a one element list
$\left[\begin{array}{l}e \mid x<-x s] \\ \text { concat (map }\end{array} \underset{(\backslash x \rightarrow>}{\Rightarrow}[e]\right)$ xs)
[e | x <- xs, y <- ys] \Rightarrow concat (map (\x->
[e|x <- xs, y<- ys, z <- zs] \Rightarrow concat (map (\x->

Eliminate the intermediate list

[e | x <- xs] \Rightarrow concat (map ($\backslash x->$ [e]) xs)
Notice map creates a list which is immediately consumed by concat This intermediate list is avoided by concatMap
concatMap f [] = []
concatMap $f(x: x s)=(f x)++($ concatMap $f x s)$
[e | x <- xs] \Rightarrow concatMap ($\backslash x$-> [e]) xs
[e|x <- xs, y <- ys] \Rightarrow
concatMap (\x->
[e | x <- xs, $y<-y s, z<-z s] \Rightarrow$
concatMap (\x->

October 7, 2002

List Comprehensions with Predicates

$$
\begin{aligned}
& {[\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p}] \Rightarrow} \\
& \quad(\operatorname{map}(\backslash \mathrm{x}->\mathrm{e}) \text { (filter }(\backslash \mathrm{x}->\mathrm{p}) \mathrm{xs}) \\
& \text { concatMap (} \backslash \mathrm{x}->\text { if } p \text { then [e] else []) xs } \\
& {[\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p}, \mathrm{y}<-\mathrm{ys}] \Rightarrow} \\
& \text { concatMap }(\backslash \mathrm{x}->\text { if } p \text { then }
\end{aligned}
$$

$T E[[[$ e | $]]]=\quad=$: []

Can we avoid concatenation altogether?


```
TE[[[ e \(\mid\) Q] ]] = TQ[[[e \(\mid\) Q] ++ []]]
\(\operatorname{TQ}\left[\left[\begin{array}{l|llll}\text { e } & \mathrm{x} & \left.\left.<-\mathrm{L}_{1}, ~ Q\right]++\mathrm{L}\right]\end{array}\right]=\right.\)
    let f [] \(=\mathrm{L}\)
        \(f(x: x s)=T Q[[[\) e | Q \(]++(f\) xs) \(]]\)
    in
        ( \(\mathbf{f} \mathrm{L}_{1}\) )
```

 \(T Q\left[\left[\left[\begin{array}{l|l}\text { e } & \mathrm{B}, \mathrm{Q}]++\mathrm{L}]]= \\ \text { l }\end{array}\right.\right.\right.\)
 if \(B\) then TQ[[[e | Q] ++ L]]
 else L
 TQ[[[e | \(]\) ++ L]] =e: L
 This translation is efficient because it never flattens. The list is built right-to-left, consumed left-to-right.

The Correctness Issue

How do we decide if a translation is correct?

- if it produces the same answer as some reference translation, or
- if it obeys some other high-level laws

In the case of comprehensions one may want to prove that a translation satisfies the comprehension rewrite rules.

Desugaring Function Definitions

```
Function def \(\Rightarrow \lambda\)-expression + Case
\(\operatorname{map} f[] \quad=[]\)
\(\operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=(\mathrm{f} x):(\operatorname{map} \mathrm{f} \mathbf{x s})\)
\(\Rightarrow\)
map \(=\) ( \(\backslash t 1\) t2 \(->\)
    case (t1,t2) of
        (f, []) -> []
        (f, (x:xs)) \(\rightarrow\) (f \(x\) ): (map \(f x s)\)
```

We compile the pattern matching using a tuple.

Complex to Simple Patterns

```
last [] = e1
last [x] = e2
last (x1:(x2:xs)) = e3
    =>
last = \t ->
    case t of
        [] -> e1
        (t1:t2) ->
```


Pattern Matching and Strictness

pH uses top-to-bottom, left-to-right order in pattern matching. This still does not specify if the pattern matching should force the evaluation of an expression

```
case (e1,e2) of
            ([] , Y) -> eb1
            ((x:xs), z) -> eb2
```

Should we valuate e2?
If not then the above expression is the same as
pH tries to evaluate minimum number of arguments.

Order of Evaluation and Strictness

Is there a minimum possible evaluation of an expression for pattern matching?

```
case (x,y,z) of
    (x,y,1) -> e1
case (z,Y,x) of
    (1,y,x) -> e1
    (1,Y,0) -> e2 vs
    (0,Y,1) -> e2
    (0,1,0) -> e3
    (0,1,0) -> e3
```

Very subtle differences - programmer should write order-insensitive, disjoint patterns.

Pattern Matching: Syntax \& Semantics

Let us represent a case as (case e of C) where c is

$$
\begin{aligned}
& C=P \rightarrow e|c|(P-P e), C \\
& P=x\left|C N_{0}\right| C N_{k}\left(P_{1}, \ldots, P_{k}\right)
\end{aligned}
$$

The rewriting rules for a case may be stated as follows:

$$
\begin{array}{cl}
\text { (case e of } P \rightarrow e 1, C) & \\
\Rightarrow \text { e1 } & \text { if match }(P, e) \\
\Rightarrow & \text { if } \sim \operatorname{match}(P, e) \\
\text { (case e of } P \rightarrow e 1) & \text { if match }(P, e) \\
\Rightarrow \text { e1 } & \text { if } \sim \operatorname{match}(P, e)
\end{array}
$$

The match Function

$$
\begin{aligned}
& \mathbf{P}=\mathbf{x}\left|\mathrm{CN}_{0}\right| \mathrm{CN}_{\mathrm{k}}\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}\right) \\
& \text { match[[x, t]] = True } \\
& \operatorname{match}\left[\left[\mathrm{CN}_{0}, \mathrm{t}\right]\right]=\mathrm{CN}_{0}==\operatorname{tag}(\mathrm{t}) \\
& \operatorname{match}\left[\left[\mathrm{CN}_{\mathrm{k}}\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}\right), \mathrm{t}\right]\right]= \\
& \text { if } \operatorname{tag}(\mathrm{t})==\mathrm{CN}_{\mathrm{k}} \\
& \text { then } \\
& \text { (match[[P } \left.\left.\mathrm{P}_{1}, \operatorname{proj}_{1}(\mathrm{t})\right]\right] \text { \& \& } \\
& \text {. } \\
& \left.\operatorname{match}\left[\left[\mathrm{P}_{\mathrm{k}}, \quad \operatorname{proj}_{\mathrm{k}}(\mathrm{t})\right]\right]\right) \\
& \text { else } \\
& \text { False }
\end{aligned}
$$

pH Pattern Matching

```
TE[[(case e of C) \(]]=\)
    (let \(t=e\) in \(T C[[t, C]]\) )
\(\operatorname{TC}[[t, \quad(P->e)]]=\)
    if match[[P, t]],
        then (let bind[[P, t]] in e)
        else error "match failure"
\(\operatorname{TC}[[t,((P->e), C)]]=\)
        if match[[P, t]]
        then (let bind[[P, t]] in e)
        else TC[[t, C]]
```


Pattern Matching: bind Function

$$
\begin{aligned}
& \operatorname{bind}\left[\left[\begin{array}{ll}
\mathrm{x}, \mathrm{t}]] \quad=\mathrm{x}=\mathrm{t} \\
\operatorname{bind}\left[\left[\mathrm{CN}_{0}, \mathrm{t}\right]\right]=\varepsilon \\
\left.\operatorname{bind}\left[\left[\mathrm{CN}_{\mathrm{k}}\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}\right), \mathrm{t}\right]\right]\right]=
\end{array}\right.\right.
\end{aligned}
$$

$$
\text { bind }\left[\left[P_{1}, \quad \operatorname{proj}_{1}(t)\right]\right] ;
$$

$$
\operatorname{bind}\left[\left[P_{k}, \quad \operatorname{proj}_{k}(t)\right]\right]
$$

Refutable vs Irrefutable Patterns

Patterns are used in binding for destructuring an expression---but what if a pattern fails to match?

$$
\begin{array}{ll}
\text { let } \begin{aligned}
(x 1, x 2) & =e 1 \\
x: x s & =e 2 \\
y^{1}: y^{2}: y s & =e 3
\end{aligned} \\
\text { in }
\end{array}
$$

what if e2 evaluates to [] ?
e3 to a one-element list ?
Should we disallow refutable patterns in bindings?
Too inconvenient!
Turn each binding into a case expression

