

Arvind
Laboratory for Computer Science
M.I.T.

October 2, 2002
hattp://www.csg.lcs.mit.edu/6.827

Algebraic types

- Algebraic types are tagged unions of products
- Example

- new "constructors" (a.k.a. "tags", "disjuncts", "summands")
- a k-ary constructor is applied to k type expressions

Constructors are functions

- Constructors can be used as functions to create values of the type

```
let
    11 :: Shape
    11 = Line e1 e2
    t1 :: Shape = Triangle e3 e4 e5
    q1 :: Shape = Quad e6 e7 e8 e9
in
```

where each "eJ" is an expression of type "Pnt"

Pattern-matching on algebraic types

- Pattern-matching is used to examine values of an algebraic type

```
anchorPnt :: Shape -> Pnt
anchorPnt s = case s of
    Line p1 p2 -> p1
    Triangle p3 p4 p5 -> p3
    Quad p6 p7 p8 p9 -> p6
```

- A pattern- match has two roles:
- A test: "does the given value match this pattern?"
- Binding ("if the given value matches the pattern, bind the variables in the pattern to the corresponding parts of the value")

Pattern- matching scope \& don't cares

- Each clause starts a new scope: can reuse bound variables
- Can use "don't cares" for bound variables

```
anchorPnt :: Shape -> Pnt
anchorPnt s = case s of
    Line p1 _ -> pl
    Triangle p1 - _ -> p1
    Quad p1 _ _ _ -> p1
```


Pattern-matching more syntax

- Functions can be defined directly using pattern-matching

```
anchorPnt :: Shape -> Pnt
anchorPnt (Line p1 _) = p1
anchorPnt (Triangle p1 _ _) = p1
anchorPnt (Quad p1 _ _ _) = p1
```

- Pattern-matching can be used in list comprehensions (later)

```
(Line p1 p2) <- shapes
```


Pattern-matching Type safety

- Given a "Line" object, it is impossible to read "the field corresponding to the third point in a Triangle object" because:
- all unions are tagged unions
- fields of an algebraic type can only be examined via pattern-matching

Special syntax

- Function type constructor

Int -> Bool
Conceptually:
Function Int Bool
i.e., the arrow is an "infix" type constructor

- Tuple type constructor
(Int, Bool)
Conceptually:
Tuple2 Int Bool
Similarly for Tuple3, ...

Type Synonyms

data Point $=$ Point Int Int
versus

```
type Point = (Int,Int)
```

Type Synonyms do not create new types. It is just a convenience to improve readability.

```
move :: Point -> (Int,Int) -> Point
move (Point x y) (sx,sy) =
    Point (x + sx) (y + sy)
```

versus

```
move (x,y) (sx,sy) =
```

 \((x+s x, y+s y)\)

Abstract Types

A rational number is a pair of integers but suppose we want to express it in the reduced form only. Such a restriction cannot be enforced using an algebraic type.

```
module Rationalpackage
    (Rational,rational,rationalParts) where
    data Rational = RatCons Int Int
    rational :: Int -> Int -> Rational
    rational x y = let
        d = gcd x y
            in RatCons (x/d) (y/d)
    rationalParts :: Rational -> (Int,Int)
    rationalParts (RatCons x y)= (x,y)
```

No pattern matching on abstract data types

Examples of Algebraic types

```
data Bool = False | True
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)
data Tree' a b = Leaf' a
    | Nonleaf' b (Tree' a b) (Tree' a b)
data Course = Course String Int String (List Course)
    name number description pre-reqs
```


Lists

```
data List t = Nil | Cons t (List t)
```

A list data type can be constructed in two different ways:
an empty list
or a non-empty list

Nil

the first element the rest of the elements

- All elements of a list have the same type
- The list type is recursive and polymorphic

Infix notation

$$
\begin{gathered}
\text { Cons } \mathrm{x} \mathrm{xs} \mathrm{\equiv x:xs} \\
2: 3: 6: \mathrm{Nil} \equiv 2:(3:(6: \mathrm{Nil})) \equiv[2,3,6]
\end{gathered}
$$

This list may be visualized as follows:

Simple List Programs

Sum of numbers in a list

```
sum []
```

Last element in a list

```
last [] = x
```

last (x:xs) =

All but the last element in a list

```
init []
init (x:xs) =
```

What do the following do?
init (a:xs)
(a: (init xs))

Example: Split a list

data Token $=$ Word String \mid Number Int
Split a list of tokens into two lists - a list words and a list of numbers.

```
split :: (List Token)->
    ((List String),(List Int))
split [] = ([],[])
split (t:ts) = ?
```


Using maps and folds

1. Write sum in terms of fold
2. Write split using foldr split :: (List Token) -> ((List String), (List Int))
3. What does function $f y$ do?
fy xys = map second xys
second (x, y) = y
fy : :

Flattening a List of Lists

```
append :: (List t) -> (List t) >> (List t)
append [] ys = ys
append (x:xs) ys = (x:(append xs ys))
```

```
flatten :: (List (List t)) -> (List t)
```

flatten :: (List (List t)) -> (List t)
flatten [] = []
flatten [] = []
flatten (xs:xss) = append xs (concat xss)

```
flatten (xs:xss) = append xs (concat xss)
```


Zipping two lists

```
zipWith : : (tx -> ty \(\rightarrow\) tz) ->
    (List tx) ->
    (List ty) -> (List tz)
zipWith f [] [] = []
zipWith \(f(x: x s)(y: y s)=\)
```

What does f do?
f xs = zipWith append xs (init ([]:xs))

Suppose x is:
$\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}$

Arithmetic Sequences: Special Lists

$$
\begin{aligned}
& {[1 \ldots 4] \quad \equiv \quad[1,2,3,4]} \\
& {[1,3 \ldots 10] \equiv[1,3,5,7,9]} \\
& {[5,4 \ldots 1] \equiv[5,4,3,2,1]} \\
& {[5,5 \ldots 10] \equiv \quad[5,5,5, \ldots] \quad ?} \\
& {[5 \ldots] \quad[5,6,7, \ldots] \quad ?}
\end{aligned}
$$

Three- Partitions

Generate a list containing all three-partitions ($\mathrm{nc} 1, \mathrm{nc} 2, \mathrm{nc} 3$) of a number m , such that

- nc1 $\leq \mathrm{nc} 2 \leq \mathrm{nc} 3$
- $\mathrm{nc} 1+\mathrm{nc} 2+\mathrm{nc} 3=\mathrm{m}$

> three_partitions $m=$ \qquad [$\mathrm{mc} 1, \mathrm{nc} 2, \mathrm{nc} 3) \left\lvert\, \begin{aligned} & \mathrm{nc} 1<-[0 \ldots \mathrm{~m}] \\ & \mathrm{nc} 2<-[0 . . \mathrm{m}]\end{aligned}\right.$

Efficient Three-Partitions

```
three_partitions m =
    [ (nc1,nc2,nc3) | nc1 <- [0..floor(m/3)],
                        nc2 <-
```


The Power of List Comprehensions

[(i,j) | i <- [1..n], j <- [1..m]]
using map

```
point i j = (i,j)
points i = map (point i) [1..m]
all_points = map points [1..n]

\section*{Infinite Data Structures}
1. ints_from \(i=i:\left(i n t s \_f r o m(i+1)\right)\)
\[
\begin{aligned}
\text { nth } n(x: x s)= & \text { if } n=1 \text { then } x \\
& \text { else nth }(n-1) \text { xs }
\end{aligned}
\]
nth 50 (ints_from 1) -->
\(?\)
2. ones \(=1\) :ones
nth 50 ones --> \(?\)
3. \(x s=[f x \mid x<-a: x s]\) nth 10 xs \(-->\) ?

These are well defined but deadly programs in pH . You will get an answer but the program may not terminate.

\section*{Primes: The Sieve of Eratosthenes}
```

primes = sieve [2..]
sieve (x:xs) = x:(sieve (filter (p x) xs))
p x y = (y mod x)}\not=
nth 100 primes

```
```

