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What are Types? 

• A method of classifying objects (values) in 
a language 

x :: τ? 

says object x has type τ??or object x 
belongs to a type τ? 

• τ denotes a set of values. 

This notion of types is different from languages 
like C, where a type is a storage class specifier. 
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Type Correctness 

•	 If x :: τ, then only those operations that are 
appropriate to set τ may be performed on x. 

•	 A program is type correct if it never performs 
a wrong operation on an object. 

- Add an Int and a Bool 
- Head of an Int 
- Square root of a list 
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Type Safety 

• A language is type safe if only type 
correct programs can be written in that 
language. 

• Most languages are not type safe, i.e., 
have “holes” in their type systems. 

Fortran: Equivalence, Parameter passing 
Pascal: Variant records, files 
C, C++: Pointers, type casting 

However, Java, CLU, Ada, ML, Id, Haskell, pH 
etc. are type safe. 
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Type Declaration vs Reconstruction 

• Languages where the user must declare the types 
– CLU, Pascal, Ada, C, C++, Fortran, Java 

• Languages where type declarations are not needed 
and the types are reconstructed at run time 
– Scheme, Lisp 

• Languages where type declarations are generally not 
needed but allowed, and types are reconstructed at 
compile time 
– ML, Id, Haskell, pH 

A language is said to be statically typed if type-checking 
is done at compile time 
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Polymorphism 

• In a monomorphic language like Pascal, 
one defines a different length function for 
each type of list 

• In a polymorphic language like ML, one 
defines a polymorphic type (list t), where t 
is a type variable, and a single function 
for computing the length 

• pH and most modern functional languages 
have polymorphic objects and follow the 
Hindley-Milner type system. 
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Type Instances 

The type of a variable can be instantiated 
differently within its lexical scope. 

let

id = \x.x


in

((id1 5), (id2 True))


id1 :: ?


id2 :: ?


Both id1 and id2 can be regarded as instances of type 

?
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Type Instances: another example 

twice1 :: ? 

twice2 :: ? 

let 
twice :: (t -> t) -> t -> t 
twice f x = f (f x) 

in 
twice1 twice2(plus 3) 4 
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Type Instantiation:
λ-bound vs Let-bound Variables 

Only let-bound identifiers can be instantiated 
differently. 

let 
twice f x = f (f x) 

in 
twice twice (plus 3) 4 

vs. 

let 
twice f x = f (f x) 
foo g = (g g (plus 3)) 4 

in 
foo twice 

Generic vs. Non-generic type variables 
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A mini Language 
to study Hindley-Milner Types 

• There are no types in the syntax of the language! 

• The type of each subexpression is derived by the 
Hindley-Milner type inference algorithm. 

Expressions 
E ::= c constant 

| x variable 
| ??λx. E abstraction 
| (E1 E2) application 
| let x = E1 in E2 let-block 

Types 
τ ::= ι base types (Int, Bool ..) 

| t type variables 
| τ1 ? --> τ2 Function types 

L6-12 
Arvind 

Type Inference Issues 

•	 What does it mean for two types τa ?and τb to be equal? 
–	 Structural Equality 

Suppose τ = --> τ2
τ

a τ1 


b = --> τ4
τ3 ?

Is τ = τb ?
a 

•	 Can two types be made equal by choosing appropriate 

substitutions for their type variables?

–	 Robinson’s unification algorithm 

Suppose τ --> Bool 
τ

a = t 1 


b = Int ?
--> t2

Are τ and τb unifiable ?
a 

Suppose τ = t 1--> Bool 
τ
a


b = Int ?
--> Int

Are τ and τb unifiable ?
a 
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Simple Type Substitutions 

A substitution is a map 
S : Type Variables --> Types 

S = [τ?/ t1,..., τn ?/ t n] 

τ’ = S τ τ’ is a Substitution Instance of τ 
Example: 

S = [(t --> Bool) / t1] 
S( t1 --> t1) = ? 

Types 
τ ::= ι base types (Int, Bool ..) 

| t type variables 
| τ1 ? --> τ2 Function types 

Substitutions can be composed, i.e., S2 S1 
Example: 

S1 = [(t --> Bool) / t1] ; S2 = [Int / t] 

S2 S1 ( t1 --> t1) = ? 
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def Unify(τ1, τ2) = 
case ( τ1, τ2) of 

( τ1, t2) = [τ1 / t2] 
(t1, τ2) = [τ2 / t1] 
( ι1, ι2) = if ( eq? ι1 ι2) then [ ] 

else fail 
( τ11 --> τ12, τ21 --> τ22) 

= let S1=Unify(τ11, τ21) 
S2=Unify(S1( τ12), S1( τ22)) 

in S2 S1 

otherwise = fail 

Does the order 
matter? 
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Unification 
An essential subroutine for type inference 

Unify(τ1, τ2) tries to unify τ1 and τ2 and returns a 

substitution if successful 
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Inferring Polymorphic Types 

Constraints: 

let 
id = λx. x 

in 
... (id True) ... (id 1) ... 

id :: t1 --> t1 
id :: Int --> t2 
id :: Bool --> t3 

id :: ∀ 1. t1 --> t1 

Different uses of a generalized type variable 
may be instantiated differently 

id2 : Bool --> Bool 
id1 : Int --> Int 

Solution: Generalize the type variable: 

??t 

Generalization is Restricted 
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f = λg. ...(g True) ... (g 1) ... 

Can we generalize the type of g to ? 

∀t 1 t 2. t1 --> t2 ? 

There will be restrictions on g from the 
environment, the place of use, which may 
make this deduction unsound (incorrect) 

Only generalize “new” type variables, the 
variables on which all the restrictions are 
visible. 
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A Formal Type System 

Note, all the ∀’s occur in the beginning of a type scheme, 
i.e., a type τ cannot contain a type scheme σ 

A type τ?is said to be polymorphic if it contains a type 
variable 

Types 
τ? ::= ι base types 

| t type variables 
| τ?? --> τ2 Function types 

Type Schemes 
σ ::= τ? 

|  ∀ t. σ? 

Type Environments 
TE ::= Identifiers --> Type Schemes 

{ + :: Int --> Int --> Int, 
f :: ∀ t. t --> t --> Bool }Example TE 
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Free and Bound Variables 

σ = ?∀t 1..t . τn

BV(σ) = { t1,..., t }n 
FV(σ) = {type variables of τ} - { t1,..., t }n 

The definitions extend to Type Environments in an 
obvious way 

Example: 
σ ? = ∀?t 1. (t1 --> t2) 

FV(σ) = 
BV(σ) = 
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Type Substitutions 

A substitution is a map 
S : Type Variables --> Types 

S = [τ?/ t1?????????,..., τn ?/ t n] 

τ’ = S τ τ’ is a Substitution Instance of τ 

σ’ = S σ Applied only to FV(σ), with renaming of BV(σ) 
as necessary 

similarly for Type Environments 

Examples: 
S = [(t2 --> Bool) / t1] 
S( t1 --> t1) = ( t2 --> Bool) --> ( t2 --> Bool) 

S( ∀t 1.t1 --> t2) = ? 

S( ∀t 2.t1 --> t2) = ? 

Substitutions can be composed, i.e., S2 S1 
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Instantiations 

• Type scheme σ can be instantiated into a type τ’ by 
substituting types for BV(σ), that is, 

τ’ = S τ for some S s.t. Dom(S) ⊆ BV(σ) 

-?τ’ is said to be an instance of σ ( σ >  τ’) 

- τ’ is said to be a generic instance of σ?when S 
maps variables to new variables. 

σ =  ∀ t 1..t n. τ 

Example: 
σ = ∀ t 1. t1 --> t2 

a generic instance of σ?is ? 
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Generalization aka Closing 

• Generalization introduces polymorphism 

• Quantify type variables that are free in τ? 
but not free in the type environment (TE) 

• Captures the notion of new type variables 
of τ 

Gen(TE,τ) = ∀ t 1..t n. τ 
where { t1...t n } = FV(τ) - FV(TE) 
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Type Inference 

•	 Type inference is typically presented in two 

different forms: 


–	 Type inference rules: Rules define the type of each 
expression 

• Needed for showing that the type system is sound 

–	 Type inference algorithm: Needed by the compiler 
writer to deduce the type of each subexpression or to 
deduce that the expression is ill typed. 

•	 Often it is nontrivial to derive an inference 
algorithm for a given set of rules. There can be 
many different algorithms for a set of typing rules. 

next lecture ... 

September 25, 2002 http://www.csg.lcs.mit.edu/6.827 

11 

http://www.csg.lcs.mit
http://www.csg.lcs.mit

