

Arvind
Laboratory for Computer Science

M.I.T.

September 18, 2002
'http://www.csg.lcs.mit.edu/6.827

Outline	${ }_{\text {Arvind }}^{\text {L5-2 }}$
- The $\lambda_{\text {let }}$ Calculus - Some properties of the $\lambda_{\text {let }}$ Calculus	

λ-calculus with Letrec

$\mathrm{PF}_{1}::=$ negate \mid not $|\ldots| \operatorname{Prj}_{1}\left|\operatorname{Prj}_{2}\right| \ldots$
$\mathrm{PF}_{2}::=+\mid \ldots$
$\mathrm{CN}_{0}::=$ Number | Boolean
$\mathrm{CN}_{2}::=$ cons $\mid \ldots$
Statements

$$
S::=\varepsilon|x=E| S ; S
$$

Variables on the LHS in a let expression must be pairwise distinct

Let-block Statements

" ; " is associative and commutative

$$
\begin{array}{ll}
\mathrm{S}_{1} ; \mathrm{S}_{2} & \equiv \mathrm{~S}_{2} ; \mathrm{S}_{1} \\
\mathrm{~S}_{1} ;\left(\mathrm{S}_{2} ; \mathrm{S}_{3}\right) & \equiv\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right) ; \mathrm{S}_{3} \\
& \equiv ? \\
\varepsilon ; \mathrm{S} & \equiv \mathrm{~S} \\
\text { let } \varepsilon \text { in } \mathrm{E} & \equiv \mathrm{E}
\end{array}
$$

Free Variables of an Expression

```
\(\mathrm{FV}(\mathrm{x}) \quad=\{\mathrm{x}\}\)
\(\operatorname{FV}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right) \quad=\mathrm{FV}\left(\mathrm{E}_{1}\right) \cup \mathrm{FV}\left(\mathrm{E}_{2}\right)\)
\(F V(\lambda x . E) \quad=F V(E)-\{x\}\)
\(\mathrm{FV}(\) let S in E\()=\mathrm{FVS}(\mathrm{S}) \mathrm{UFV}(\mathrm{E})-\mathrm{BVS}(\mathrm{S})\)
```

$\operatorname{FVS}(\varepsilon) \quad=\{ \}$
FVS(x = E; S) = FV(E) U FVS(S)
$\operatorname{BVS}(\varepsilon) \quad=\{ \}$
$B V S(x=E ; S)=\{x\} \cup B V S(S)$

α-Renaming (to avoid free variable capture)

Assuming t is a new variable, rename x to t :

$$
\lambda x . e \quad \equiv \lambda t .(e[t / x])
$$

$$
\text { let } \mathrm{x}=\mathrm{e} ; \mathrm{S} \text { in } \mathrm{e}_{0}
$$

$$
\equiv \operatorname{let} \mathrm{t}=\mathrm{e}[\mathrm{t} / \mathrm{x}] ; \mathrm{S}[\mathrm{t} / \mathrm{x}] \text { in } \mathrm{e}_{0}[\mathrm{t} / \mathrm{x}]
$$

where $[t / x]$ is defined as follows:

$$
\begin{aligned}
& \mathrm{x}[\mathrm{t} / \mathrm{x}] \quad=\mathrm{t} \\
& y[t / x] \quad=y \quad \text { if } x \neq y \\
& \left(\mathrm{E}_{1} \mathrm{E}_{2}\right)[\mathrm{t} / \mathrm{x}]=\left(\mathrm{E}_{1}[\mathrm{t} / \mathrm{x}] \quad \mathrm{E}_{2}[\mathrm{t} / \mathrm{x}]\right) \\
& \text { (} \lambda x \text {.E) }[t / x]=\lambda x \text {. } E \\
& (\lambda y . E)[t / x]=R y . E[t / x] \quad \text { if } x \neq y \\
& \text { (let } \mathrm{S} \text { in } \mathrm{E} \text {) }[\mathrm{t} / \mathrm{x}] \\
& =? \quad(\text { let } \mathrm{S} \text { in } \mathrm{E}) \quad \text { if } \mathrm{x} \notin \mathrm{FV}(\text { let } \mathrm{S} \text { in } \mathrm{E}) \\
& \text { (let } \mathrm{S}[\mathrm{t} / \mathrm{x}] \text { in } \mathrm{E}[\mathrm{t} / \mathrm{x}] \text {) if } \mathrm{x} \in \mathrm{FV}(\text { let } \mathrm{S} \text { in } \mathrm{E} \text {) } \\
& \varepsilon[t / x] \quad=\quad \varepsilon \\
& (y=E)[t / x] \quad=\quad(y=E[t / x]) \\
& \left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right)[\mathrm{t} / \mathrm{x}]=? \quad\left(\mathrm{~S}_{1}[\mathrm{t} / \mathrm{x}] ; \mathrm{S}_{2}[\mathrm{t} / \mathrm{x}]\right)
\end{aligned}
$$

Primitive Functions and Datastructures

δ-rules

$$
+(\underline{n}, \underline{m}) \quad \rightarrow \quad \underline{n+m}
$$

Cond-rules
Cond(True, $\left.\mathrm{e}_{1}, \mathrm{e}_{2}\right) \quad \rightarrow \mathrm{e}_{1}$?
Cond(False, $\left.e_{1}, e_{2}\right) \quad \rightarrow e_{2}$
Data-structures

$$
\begin{gathered}
\mathrm{CN}_{\mathrm{k}}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}\right) \text { let } \mathrm{t}_{1}=\mathrm{e}_{1} ; \ldots ; \mathrm{t}_{\mathrm{k}}=\mathrm{e}_{\mathrm{k}} \\
\text { in }^{\mathrm{CN}_{k}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right)} \\
\operatorname{Prj}_{\mathrm{i}}\left(\mathrm{CN}_{\mathrm{k}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)\right) \xrightarrow[\mathrm{a}_{\mathrm{i}}]{ }
\end{gathered}
$$

The β-rule

The normal β-rule

$$
(\lambda x . e) e_{a} \rightarrow \mathbb{e}\left[e_{a} / x\right]
$$

is replaced the following β-rule

$$
(\lambda x . e) e_{a} \rightarrow \operatorname{Ret} t=e_{a} \text { in } e[t / x]
$$

$$
\text { where } t \text { is a new variable }
$$

and the Instantiation rules which are used to refer to the value of a variable

Values and Simple Expressions

```
Values
\(\mathrm{V}::=\lambda x . \mathrm{E}\left|\mathrm{CN}_{0}\right| \mathrm{CN}_{k}\left(\mathrm{SE}_{1}, \ldots, \mathrm{SE}_{k}\right)\)
```

Simple expressions
SE::=x|V

Contexts for Expressions

A context is an expression (or statement) with a "hole" such that if an expression is plugged in the hole the context becomes a legitimate expression:

$$
\begin{aligned}
\mathrm{C}[]::= & {[] } \\
& \mid \lambda \times . \mathrm{C}[] \\
& |\mathrm{C}[] \mathrm{E}| \mathrm{E} \mathrm{C}[] \\
& \mid \text { let } \mathrm{S} \text { in } \mathrm{C}[] \\
& \mid \text { let } \mathrm{SC}[] \text { in } \mathrm{E}
\end{aligned}
$$

Statement Context for an expression

$$
\begin{aligned}
S C[]::= & x=C[] \\
& |S C[] ; S| S ; S C[]
\end{aligned}
$$

$\lambda_{\text {let }}$ Instantiation Rules

A free variable in an expression can be instantiated by a simple expression

Instantiation rule 1

$$
(\text { let } \mathrm{x}=\mathrm{a} ; \mathrm{S} \text { in } \mathrm{C}[\mathrm{x}]) \rightarrow\left(\text { let } \mathrm{x}=\mathrm{a} ; \mathrm{S} \text { in } \mathrm{C}^{\prime}[\mathrm{a}]\right)
$$

simple expression

renamed C[] to avoid freevariable capture

Instantiation rule 2

$$
(x=a ; S C[x]) \rightarrow\left(x=a ; S C^{\prime}[a]\right)
$$

Instantiation rule 3

$$
\mathrm{x}=\mathrm{a} \quad \rightarrow \mathrm{x}=\mathrm{C}^{\prime}[\mathrm{C}[\mathrm{x}]] \quad \text { where } \mathrm{a}=\mathrm{C}[\mathrm{x}]
$$

Lifting Rules

(let S' in e') is the α ?renamed (let S in e) to avoid name conflicts in the following rules:

$$
\begin{aligned}
& \mathrm{x}=\text { let } \mathrm{S} \text { in } \mathrm{e} \rightarrow \\
& \text { let } \mathrm{S}_{1} \text { in }(\text { let } \mathrm{S} \text { in } \mathrm{e}) \rightarrow \quad \text { let } \mathrm{S}_{1} ; \mathrm{S}^{\prime} \text { in } \mathrm{e}^{\prime} \\
&(\text { let } \mathrm{S} \text { in } \mathrm{e}) \mathrm{e}_{1} \rightarrow \quad \text { let } \mathrm{S}^{\prime} \text { in } \mathrm{e}^{\prime} \mathrm{e}_{1} \\
& \text { Cond }\left((\text { let } \mathrm{S} \text { in } \mathrm{e}), \mathrm{e}_{1}, \mathrm{e}_{2}\right) \\
& \rightarrow \text { let } \mathrm{S}^{\prime} \text { in } \operatorname{Cond}\left(\mathrm{e}^{\prime}, \mathrm{e}_{1}, \mathrm{e}_{2}\right)
\end{aligned} \quad \begin{array}{r}
\mathrm{PF}_{\mathrm{k}}\left(\mathrm{e}_{1}, \ldots,(\text { let } \mathrm{S} \text { in } \mathrm{e}), \ldots, \mathrm{e}_{\mathrm{k}}\right) \\
\\
\rightarrow \text { let } \mathrm{S}^{\prime} \text { in } \mathrm{PF}_{\mathrm{k}}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}^{\prime}, \ldots, \mathrm{e}_{\mathrm{k}}\right)
\end{array}
$$

Outline

- The $\lambda_{\text {let }}$ Calculus $\sqrt{ }$
- Some properties of the $\lambda_{\text {let }}$ Calculus \leftarrow

Confluenence and Letrecs

```
odd = \lambdan.Cond(n=0, False, even (n-1))
even = \lambdan.Cond(n=0, True, odd (n-1))
substitute for even (n-1) in M
odd = \lambdan.Cond(n=0, False,
    Cond(n-1 = 0, True, odd ((n-1)-1))) (M (M)
even = \lambdan.Cond(n=0, True, odd (n-1))
substitute for odd (n-1) in M
odd = \lambdan.Cond(n=0, False, even (n-1))
even = \lambdan.Cond(n=0, True,
    Cond(n-1 = 0,False, even ((n-1)-1)))
```

Can odd in M_{1} and M_{2} be reduced to the same expression ?

λ versus $\lambda_{\text {let }}$ Calculus

Terms of the $\lambda_{\text {let }}$ calculus can be translated into terms of the λ calculus by systematically eliminating the let blocks. Let T be such a translation.

Suppose $\mathrm{e} \rightarrow \mathrm{e}_{1}$ in $\lambda_{\text {let }}$ then does there exist a reduction such that $\mathrm{T}[[\mathrm{e}]] \rightarrow \mathrm{T}\left[\left[\mathrm{e}_{1}\right]\right]$ in λ ?

Instantaneous Information

"Instantaneous information" (info) of a term is defined as a (finite) trees

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{P}} \quad::=\perp\left|\lambda P \mathrm{CN}_{0}\right| \mathrm{CN}_{\mathrm{k}}\left(\mathrm{~T}_{\mathrm{P} 1}, \ldots, \mathrm{~T}_{\mathrm{Pk}}\right) \\
& \text { Info: } \quad E \rightarrow T_{P} \\
& \operatorname{Info}[\{\mathrm{~S} \text { in } \mathrm{E}\}]=\operatorname{Info}[\mathrm{E}] \\
& \operatorname{Info}[\lambda x . E]=\lambda \\
& \operatorname{Info}\left[\mathrm{CN}_{0}\right]=\mathrm{CN}_{0} \\
& \operatorname{Info}\left[\mathrm{CN}_{k}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)\right] \\
& =\mathrm{CN}_{\mathrm{k}}\left(\operatorname{Info}\left[\mathrm{a}_{1}\right], \ldots, \operatorname{Info}\left[\mathrm{a}_{\mathrm{k}}\right]\right) \\
& \operatorname{Info}[E] \quad=\perp \quad \text { otherwise }
\end{aligned}
$$

Reduction and Info

Terms can be compared by their Info value

Proposition Reduction is monotonic wrt Info: If $e \rightarrow e_{1}$ then $\operatorname{Info}[e] \leq \operatorname{Info}\left[e_{1}\right]$.

Proposition Confluence wrt Info:
If $e \rightarrow e_{1}$ and $e \rightarrow e_{2}$ then
$\exists e_{3}$ s.t. $e_{1} \rightarrow e_{3}$ and $\operatorname{Info}\left[e_{2}\right] \leq \operatorname{Info}\left[e_{3}\right]$.

Print: Unwinding of a term

$$
\text { Print : } \quad E \rightarrow\left\{T_{p}\right\}
$$

Unwind a term as much as possible using the following instantiation rule (Inst):
(let $\mathrm{x}=\mathrm{v}$; S in $\mathrm{C}[\mathrm{x}]) \rightarrow$? (let $\mathrm{x}=\mathrm{v}$; S in $\mathrm{C}[\mathrm{v}]$) and keep track of all the unwindings

Print[e] $=\left\{\operatorname{lnfo}\left[e_{1}\right] \mid e \rightarrow e_{1}\right.$ using the Inst rule $\}$?
Terms with infinite unwindings lead to infinite sets.

Garbage Collection

Let-blocks often contain bindings that are not reachable from the return expression, e.g., let $x=e$ in 5
Such bindings can be deleted without affecting the "meaning" of the term.

$$
\begin{aligned}
& \text { GC-rule } \\
& \qquad \begin{array}{l}
\text { (let } \left.\mathrm{S}_{\mathrm{G}} ; \mathrm{S} \text { in } \mathrm{e}\right) \rightarrow(\text { let } \mathrm{S} \text { in e) } \\
\text { provided } \forall \mathrm{x} .(\mathrm{x} \in(\mathrm{FV}(\mathrm{e}) \cup \mathrm{FVS}(\mathrm{~S})) \\
\\
\end{array} \quad \mathrm{x} \notin \mathrm{BVS}\left(\mathrm{~S}_{\mathrm{G}}\right)
\end{aligned}
$$

Unrestricted Instantiation

$\lambda_{\text {let }}$ instantiation rules allow only values \& variables to be substituted. Let λ_{0} be a calculus that permits substitution of arbitrary expressions:

Unrestricted Instantiation Rules of λ_{0}
let $\mathrm{x}=\mathrm{e}$; S in $\mathrm{C}[\mathrm{x}] \rightarrow$ let $\mathrm{x}=\mathrm{e}$; S in C'[e]
$(x=e ; S C[x]) \rightarrow\left(x=e ; S^{\prime}[e]\right)$
$\mathrm{x}=\mathrm{e} \quad \rightarrow \mathrm{x}=\mathrm{C}^{\prime}[\mathrm{e}] \quad$ where $\mathrm{e} \equiv \mathrm{C}[\mathrm{x}]$
Is λ_{0} more expressive than $\lambda_{\text {let }}$?

Semantic Equivalence

- What does it mean to say that two terms are equivalent?
- Do any of the following equalities imply semantic equivalence of e_{1} and e_{2}

Syntactic equality of α-convertability: $e_{1}=e_{2}$
Print equality:

$$
\operatorname{Print}\left(\mathrm{e}_{1}\right)=\operatorname{Print}\left(\mathrm{e}_{2}\right)
$$

No observable difference in any context:

