

Arvind
Laboratory for Computer Science
M.I.T.

September 16, 2002
hett://www.csg.lcs.mit.edu/6.827

Interpreters

An interpreter for the λ-calculus is a program to reduce λ-expressions to "answers".

Two common strategies

- applicative order: left-most innermost redex aka call by value evaluation
- normal order: left-most (outermost) redex aka call by name evaluation

A Call-by-value Interpreter

Answers: WHNF
Strategy: leftmost-innermost redex but not inside a λ-abstraction
$c v(E)$: Definition by cases on E

$$
\mathrm{E}=\mathrm{x}|\mathrm{Rx} \cdot \mathrm{E}| \mathrm{EE}
$$

$$
c v(x) \quad=x
$$

$$
\operatorname{cv}(\lambda x . E)=\lambda x . E
$$

$$
\operatorname{cv}\left(E_{1} E_{2}\right)=\text { let } f=\operatorname{cv}\left(E_{1}\right)
$$

$$
a=c v\left(E_{2}\right)
$$

in
case fof

$$
\lambda x \cdot E_{3}=\operatorname{cv}\left(E_{3}[a / x]\right)
$$

A Call-by-name Interpreter

Answers: WHNF
Strategy: leftmost redex
$c n(E): \quad$ Definition by cases on E

$$
\begin{aligned}
& E=x|R x . E| E E \\
& \mathrm{cn}(\mathrm{x})=\mathrm{x} \\
& \operatorname{cn}(\lambda x . E)=\lambda x . E \\
& \operatorname{cn}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\text { let } \mathrm{f}=\operatorname{cn}\left(\mathrm{E}_{1}\right) \\
& \text { in } \\
& \text { case fof } \\
& \lambda x . E_{3}=\mathrm{cn}\left(\mathrm{E}_{3}\left[\mathrm{E}_{2} / \mathrm{x}\right]\right) \\
& -\quad=\left(f E_{2}\right)
\end{aligned}
$$

Normalizing Strategy

A reduction strategy is said to be normalizing if it terminates and produces an answer of an expression whenever the expression has an answer.
aka the standard reduction
Theorem: Normal order (left-most) reduction strategy is normalizing for the? λ-calculus.

Example

$$
(\lambda x . y)((\lambda x . x x)(\lambda x . x x))
$$

call by value reduction

For computing WHNF
the call-by-name interpreter is normalizing but the call-by-value interpreter is not

λ-calculus with Constants

$$
\begin{aligned}
E::= & x|\lambda x . E| E E \\
& \mid \operatorname{Cond}_{(E, E, E)}\left(\mathrm{PF}_{k}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}\right)\right. \\
& \mid \mathrm{CN}_{0}, \\
& \mid \mathrm{CN}_{\mathrm{k}}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}\right)
\end{aligned}
$$

```
PF
```

$\mathrm{PF}_{2}::=+\mid \ldots$
$\mathrm{CN}_{0}::=$ Number | Boolean
$\mathrm{CN}_{2}::=$ cons $\mid \ldots$

It is possible to define integers, booleans, and functions on them in the pure λ-Calculus but the λ-calculus extended with constants is more useful as a programming language

Primitive Functions and Constructors

δ-rules

$$
+(\underline{n}, \underline{m}) \rightarrow \quad \underline{n+m}
$$

Cond-rules
Cond(True, $\left.e_{1}, e_{2}\right) \rightarrow e_{1}$?
Cond(False, $\left.e_{1}, e_{2}\right) \quad \rightarrow e_{2}$
Projection rules

$$
\operatorname{Prj}_{i}\left(\mathrm{CN}_{k}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}\right)\right) \quad \rightarrow \mathrm{e}_{\mathrm{i}}
$$

λ-calculus with constants is confluent provided the new reduction rules are confluent

Constants and the η-rule

- η-rule no longer works for all expressions:
$3 \neq \lambda x$. (3 x)
one cannot treat an integer as a function!
- $\quad \eta$-rule is not useful if does not apply to all expressions because it is trivially true for λ abstractions
assuming $x \notin F V(\lambda y . M)$, is
$\lambda x .(\lambda y \cdot M x)=\lambda y . M \quad ?$
$\lambda x .(\lambda y . M \times)$
\rightarrow

Recursion

```
fact n = if (n == 0) then 1
else n * fact (n-1)
```

- fact can be rewritten as:
fact $=\lambda n$. Cond (Zero? n) $1 \quad($ Mul $n($ fact $($ Sub $n 1)))$
- How to get rid of the fact on the RHS?

Idea: pass fact as an argument to itself

Self-application and Paradoxes

Self application, i.e., $(x \times)$ is dangerous.
Suppose:
$\mathrm{u} \equiv \lambda \mathrm{y}$. if $(\mathrm{y} y)=\mathrm{a}$ then b else a What is ($\mathrm{u} u$) ?

Recursion and Fixed Point Equations

Recursive functions can be thought of as solutions of fixed point equations:

```
fact = \lambdan. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))
```

Suppose
H = $\mathrm{f} . \lambda \mathrm{n}$. Cond (Zero? n) 1 (Mul n (f (Sub n 1)))
then
fact $=\mathrm{H}$ fact
fact is a fixed point of function H !

Fixed Point Equations

$\mathrm{f}: ~ \mathrm{D} \rightarrow \mathrm{D}$

A fixed point equation has the form

$$
f(x)=x
$$

Its solutions are called the fixed points of f because if x_{p} is a solution then

$$
x_{p}=f\left(X_{p}\right)=f\left(f\left(X_{p}\right)\right)=f\left(f\left(f\left(X_{p}\right)\right)\right)=\ldots
$$

Examples: f: Int \rightarrow ? $n t$

Solutions

$$
\begin{aligned}
& f(x)=x^{2}-2 \\
& f(x)=x^{2}+x+1 \\
& f(x)=x
\end{aligned}
$$

Least Fixed Point

Consider
$\mathrm{f} \mathrm{n}=$ if $\mathrm{n}=0$ then 1
else (if $\mathrm{n}=1$ then f 3 else $\mathrm{f}(\mathrm{n}-2)$)
$H=\lambda f . \lambda n . \operatorname{Cond}(n=0,1, \operatorname{Cond}(n=1, f 3, f(n-2))$
Is there an f_{p} such that $f_{p}=H f_{p}$?

Y: A Fixed Point Operator

$$
Y \equiv \lambda f .(\lambda x .(f(x x)))(\lambda x .(f(x x)))
$$

Notice
YF $\quad \rightarrow$ P λx. $F(x x))(\lambda x . F(x \times))$
\rightarrow

λ-calculus with Combinator Y

Recursive programs can be translated into the λ-calculus with constants and Y combinator. However,

- Y combinator violates every type discipline
- translation is messy in case of mutually recursive functions \Rightarrow extend the λ-calculus with recursive let blocks.

$\lambda_{\text {let }}$: A λ-calculus with Letrec

Expressions
E ::= x | $\lambda x . \mathrm{E}|\mathrm{EE}|$ let S in E
Statements

$$
S::=\varepsilon|x=E| S ; S
$$

"; " is associative and commutative

$$
\begin{aligned}
& \mathrm{S}_{1} ; \mathrm{S}_{2} \equiv \mathrm{~S}_{2} ; \mathrm{S}_{1} \\
& \mathrm{~S}_{1} ;\left(\mathrm{S}_{2} ; \mathrm{S}_{3}\right) \equiv\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right) ; \mathrm{S}_{3} \\
& \varepsilon ; \mathrm{S} \equiv \mathrm{~S} \\
& \text { let } \varepsilon \text { in } \mathrm{E} \equiv \mathrm{E}
\end{aligned}
$$

Variables on the LHS in a let expression must be pairwise distinct

α-Renaming

Needed to avoid the capture of free variables.
Assuming t is a new variable

$$
\lambda \mathrm{x} . \mathrm{e} \equiv \lambda \mathrm{t} .(\mathrm{e}[\mathrm{t} / \mathrm{x}])
$$

$$
\text { let } \mathrm{x}=\mathrm{e} ; \mathrm{S} \text { in } \mathrm{e}_{0}
$$

\equiv let $\mathrm{t}=\mathrm{e}[\mathrm{t} / \mathrm{x}] ; \mathrm{S}[\mathrm{t} / \mathrm{x}]$ in $\mathrm{e}_{0}[\mathrm{t} / \mathrm{x}]$
where $S[t / x]$ is defined as follows:
$\varepsilon[\mathrm{t} / \mathrm{x}]=\varepsilon$
$(y=e)[t / x]=\quad(y=e[t / x])$
$\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right)[\mathrm{t} / \mathrm{x}]=$? $\quad\left(\mathrm{S}_{1}[\mathrm{t} / \mathrm{x}] ; \mathrm{S}_{2}[\mathrm{t} / \mathrm{x}]\right)$
(let S in e) $\mathrm{t} / \mathrm{x}]$

$$
\begin{array}{ll}
=? & (\text { let } \mathrm{S} \text { in } \mathrm{e})
\end{array} \quad \text { if } \mathrm{x} \in \mathrm{FV}(\operatorname{let} \mathrm{~S} \text { in } \mathrm{e})
$$

The β-rule

The normal β-rule

$$
(\lambda x . e) e_{a} \rightarrow \mathbb{e}\left[e_{a} / x\right]
$$

is replaced the following β-rule

$$
(\lambda x . e) \mathrm{e}_{\mathrm{a}} \rightarrow \operatorname{Ret} \mathrm{t}=\mathrm{e}_{\mathrm{a}} \text { in } \mathrm{e}[\mathrm{t} / \mathrm{x}]
$$

$$
\text { where } t \text { is a new variable }
$$

and the Instantiation rules which are used for substitution

$\lambda_{\text {let }}$ Instantiation Rules

A free variable in an expression can be instantiated by a simple expression

V ::= $=\mathrm{x}$.E values
$\mathrm{SE}::=\times \mid \mathrm{V}$ simple expression
Instantiation rules

$$
\text { let } \mathrm{x}=\mathrm{a} ; \mathrm{S} \text { in } \mathrm{C}[\mathrm{x}] \rightarrow \quad \text { let } \mathrm{x}=\mathrm{a} ; \mathrm{S} \text { in } \mathrm{C}^{\prime}[\mathrm{a}]
$$

simple expression

free occurrence
of x in some
context C

renamed C[] to avoid free-
variable capture
$(x=a ; S C[x]) \rightarrow\left(x=a ; C^{\prime}[a]\right)$
$x=a$
$\rightarrow \mathrm{x}=\mathrm{C}^{\prime}[\mathrm{C}[\mathrm{x}]] \quad$ where $\mathrm{a}=\mathrm{C}[\mathrm{x}]$

Lifting Rules: Motivation

$$
\begin{aligned}
& \text { let } \\
& \mathrm{f}=\text { let } \mathrm{S}_{1} \text { in } \lambda \times . \mathrm{e}_{1} \\
& y=f a \\
& \text { in } \\
& \left(\left(l e t \mathrm{~S}_{2} \text { in } \lambda x . \mathrm{e}_{2}\right) \mathrm{e}_{3}\right)
\end{aligned}
$$

How do we juxtapose

$$
\left(\lambda x . e_{1}\right) a
$$

or
$\left(\lambda x . e_{2}\right) e_{3} \quad ?$

Lifting Rules

In the following rules (let S^{\prime} in e') is the α ? renaming of (let S in e) to avoid name conflicts
$x=\operatorname{let} S$ in $e \quad \rightarrow \quad x=e^{\prime} ; S^{\prime}$
let S_{1} in $($ let S in e$) \rightarrow \quad$ let S_{1}; S^{\prime} in e^{\prime}
(let S in e) $\mathrm{e}_{1} \quad \rightarrow \quad$ let S^{\prime} in $\mathrm{e}^{\prime} \mathrm{e}_{1}$
Cond((let Sine), $\left.\mathrm{e}_{1}, \mathrm{e}_{2}\right)$
\rightarrow let S^{\prime} in Cond(e', $\left.\mathrm{e}_{1}, \mathrm{e}_{2}\right)$
$\mathrm{PF}_{\mathrm{k}}\left(\mathrm{e}_{1}, \ldots,\left(l e t \mathrm{~S}\right.\right.$ in e),..., $\left.\mathrm{e}_{\mathrm{k}}\right)$
\rightarrow let S^{\prime} in $\mathrm{PF}_{\mathrm{k}}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}^{\prime}, \ldots, \mathrm{e}_{\mathrm{k}}\right)$

Datastructure Rules

$$
\begin{aligned}
& \mathrm{CN}_{\mathrm{k}}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}\right) \\
& \quad \rightarrow \operatorname{let} \mathrm{t}_{1}=\mathrm{e}_{1} ; \ldots ; \mathrm{t}_{\mathrm{k}}=\mathrm{e}_{\mathrm{k}} \text { in } \underline{\mathrm{CN}}_{\mathrm{k}}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right) \\
& \operatorname{Prj} \mathrm{j}_{\mathrm{i}}\left(\underset{\substack{\mathrm{CN}_{\mathrm{k}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right) \\
\rightarrow \mathrm{a}_{\mathrm{i}}}}{ }\right.
\end{aligned}
$$

Confluenence and Letrecs

```
odd = \lambdan.Cond(n=0, False, even (n-1))
even = \lambdan.Cond(n=0, True, odd (n-1))
substitute for even (n-1) in M
odd = \lambdan.Cond(n=0, False,
    Cond(n-1 = 0, True, odd ((n-1)-1))) (M (M)
even = \lambdan.Cond(n=0, True, odd (n-1))
substitute for odd (n-1) in M
odd = \lambdan.Cond(n=0, False, even (n-1))
even = \lambdan.Cond(n=0, True,
    Cond( n-1 = 0,False, even ((n-1)-1)))
M
```

Proposition: $\lambda_{\text {let }}$ is not confluent.
Ariola \& Klop 1994

Contexts for Expressions

Expression Context for an expression

$$
\begin{aligned}
\mathrm{C}[]:= & {[] } \\
& \mid \lambda x . \mathrm{C}[] \\
& \mid \mathrm{C}[] \mathrm{E} \text { | } \mathrm{E} \mathrm{C}[] \\
& \mid \text { let } \mathrm{S} \text { in } \mathrm{C}[] \\
& \mid \text { let } \mathrm{SC}[] \text { in } \mathrm{E}
\end{aligned}
$$

Statement Context for an expression

$$
\begin{aligned}
S C[]:: & x=C[] \\
& |S C[] ; S| S ; S C[]
\end{aligned}
$$

