

Arvind
Laboratory for Computer Science
M.I.T.

September 11, 2002
'http://www.csg.Ics.mit. edu/6.827

Functions

f may be viewed as

- a set of ordered pairs $<d, r>$ where $d \varepsilon D$ and $r \varepsilon R$
- a method of computing value r corresponding to argument d
some important notations
- λ-calculus (Church)
- Turing machines (Turing)
- Partial recursive functions

The λ-calculus:

a simple type-free language

- to express all computable functions
- to directly express higher-order functions
- to study evaluation orders, termination, uniqueness of answers...
- to study various typing systems
- to serve as a kernel language for functional languages
- However, λ-calculus extended with constants and letblocks is more suitable

λ-notation

- a way of writing and applying functions without having to give them names
- a syntax for making a function expression from any other expression
- the syntax distinguishes between the integer "2" and the function "always_two" which when applied to any integer returns 2

```
always_two x = 2;
```


Pure λ-calculus: Syntax

1. application function $\underbrace{\mathrm{E}_{1}}_{\text {argument }}$ - application is left associative $E_{1} E_{2} E_{3} E_{4} \equiv\left(\left(\left(E_{1} E_{2}\right) E_{3}\right) E_{4}\right)$
2. abstraction

or formal parameter

- the scope of the dot in an abstraction extends as far to the right as possible $\lambda x . x y \equiv \lambda x .(x y) \equiv ?(\lambda x .(x y)) \equiv(\lambda x . x y) \neq(P \lambda x . x) y$

September 11, 2002

Free and Bound Variables

- λ-calculus follows lexical scoping rules
- Free variables of an expression

$$
\begin{array}{ll}
\mathrm{FV}(\mathrm{x}) & =\{x\} \\
\mathrm{FV}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right) & =\mathrm{FV}\left(\mathrm{E}_{1}\right) \cup \mathrm{FV}\left(\mathrm{E}_{2}\right) \\
\mathrm{FV}(\lambda x . E) & =F V(E)-\{x\}
\end{array}
$$

- A variable occurrence which is not free in an expression is said to be a bound variable of the expression
- combinator: a λ-expression without free variables,

$$
\text { aka closed } \lambda \text {-expression }
$$

B-substitution

(λx.E) $E_{a} \rightarrow E\left[E_{a} / x\right]$
replace all free occurrences of x in E with E_{a}
$E[A / x]$ is defined as follows by case on E :
variable

$$
\begin{array}{ll}
y\left[E_{a} / x\right]=E_{a} & \text { if } x \equiv y \\
y\left[E_{a} / x\right]=y & \text { otherwise }
\end{array}
$$

application
$\left(E_{1} E_{2}\right)\left[E_{a} / x\right]=\left(E_{1}\left[E_{a} / x\right] \quad E_{2}\left[E_{a} / x\right]\right)$
abstraction

$$
\begin{array}{rlr}
\left(\lambda y \cdot E_{1}\right)\left[E_{a} / x\right]= & \lambda y \cdot E_{1} \quad \text { if } x \equiv y \\
\left(\lambda y \cdot E_{1}\right)\left[E_{a} / x\right]= & R z .\left(\left(E_{1}[z / y]\right)\left[E_{a} / x\right]\right) \text { otherwise } \\
& \text { where } z \notin \mathbb{F} V\left(E_{1}\right) \cup F V\left(E_{a}\right) \cup F V(x)
\end{array}
$$

B-substitution: an example

$$
(\lambda p . p(p q))[(a p b) / q]
$$

λ-Calculus as a Reduction System

Syntax

$$
E=x|R x \cdot E| E E
$$

Reduction Rule

α ?rule: $\lambda x . E \rightarrow \lambda y$. $E[y / x] \quad$ if $y \notin F V(E)$
β Prule: ($\lambda x . E) E_{a} \rightarrow E\left[E_{a} / x\right]$
η-rule: $(\lambda x . E x) \rightarrow E \quad$ if $x \notin F V(E)$
Redex
($\lambda x . E) E_{a}$
Normal Form
An expression without redexes

α and η Rules

α-rule says that the bound variables can be renamed systematically:

$$
(\lambda x . x(\lambda x \cdot a \quad x)) b \equiv(\lambda y \cdot y \quad(\lambda x . a \quad x)) b
$$

η-rule can turn any expression, including a constant, into a function:
$\lambda x . a \times \quad \rightarrow_{\eta} \quad a$
η-rule does not work in the presence of types

A Sample Reduction

$$
\begin{aligned}
C & \equiv \lambda x . \lambda y . \lambda f . f \times y \\
H & \equiv \lambda f . f(\lambda x . \lambda y . x) \\
T & \equiv \lambda f . f(\lambda x . \lambda y \cdot y)
\end{aligned}
$$

What is $\mathrm{H}(\mathrm{C} \mathrm{a} \mathrm{b})$?

Integers: Church's Representation

$0 \equiv \lambda x . \lambda y . y$
$1 \equiv \lambda x . \lambda y . x y$
$2 \equiv \lambda x \cdot \lambda y . x(x y)$
$n \equiv \lambda x . \lambda y . x(x \ldots(x y) \ldots)$
succ ?
If n is an integer, then (n a b) gives n nested a's followed by b
$\Rightarrow \quad$ the successor of n should be $a(n a b)$
succ $\equiv \lambda n . \lambda a . \lambda b . a(n a b)$
plus $\equiv \lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{m}$ succ n
mul \equiv

Booleans and Conditionals

True $\equiv \lambda x . \lambda y . x$
False $\equiv \lambda x . \lambda y . y$
zero? $\quad \equiv \lambda n . \mathrm{n}$ ($\lambda \mathrm{y}$.False) True
zero? $0 \rightarrow$?
zero? $1 \rightarrow$?
cond $\equiv \lambda b . \lambda x . \lambda y . b x y$
cond True $\mathrm{E}_{1} \mathrm{E}_{2} \rightarrow$
cond False $\mathrm{E}_{1} \mathrm{E}_{2} \rightarrow$

Recursion?

fact $n=$ if ($n=0$) then 1 else n * fact ($n-1$)

- Assuming suitable combinators, fact can be rewritten as:

```
fact = \lambdan. cond (zero? n) 1 (mul n (fact (sub n 1)))
```

- How do we get rid of the fact on the RHS?

Choosing Redexes

1. $\underset{\left.----\rho_{1}-\cdots\right)}{\left(\left(\lambda x \cdot-----\rho_{2}-\cdots\right)\right.}$
2. $((\lambda x . M)((\lambda y . N) B))$
-------------- $\rho_{1}-----------$
Does ρ_{1} followed by ρ_{2} ?produce the same expression as ρ_{2} followed by ρ_{1} ?

Notice in the second example ρ_{1} can destroy or duplicate ρ_{2}.

Church-Rosser Property

A reduction system is said to have the Church-Rosser property, if $\mathrm{E} \rightarrow \mathrm{E}_{1}$ and $E \rightarrow E_{2}$ then there exits a E_{3} such that $\mathrm{E}_{1} \rightarrow \mathrm{E}_{3}$ and $\mathrm{E}_{2} \rightarrow \mathrm{E}_{3}$.

also known as CR or Confluence
Theorem: The λ-calculus is CR.
(Martin-Lof \& Tate)

Interpreters

An interpreter for the λ-calculus is a program to reduce λ-expressions to "answers".

It requires:

- the definition of an answer
- a reduction strategy
- a method to choose redexes in an expression
- a criterion for terminating the reduction process

Definitions of "Answers"

- Normal form (NF): an expression without redexes
- Head normal form (HNF):
x is HNF
($\lambda x . E$) is in HNF if E is in HNF
($x E_{1} \ldots E_{n}$) is in HNF
Semantically most interesting- represents the information content of an expression
- Weak head normal form (WHNF):

An expression in which the left most application is not a redex.
x is in WHNF
($\lambda x . E$) is in WHNF
($x E_{1} \ldots E_{n}$) is in WHNF
Practically most interesting \Rightarrow ?Printable Answers"

Reduction Strategies

There are many methods of choosing redexes in an expression

- applicative order: left-most innermost redex - would reduce ρ_{2} before ρ_{1}
- normal order: left-most (outermost) redex
- would reduce ρ_{1} before ρ_{2}

Facts

1. Every λ-expression does not have an answer i.e., a NF or HNF or WHNF

$$
\begin{gathered}
(\lambda x . x \times x)(\lambda x . x \times x)=\Omega \\
\Omega \rightarrow
\end{gathered}
$$

2. CR implies that if NF exists it is unique
3. Even if an expression has an answer, not all reduction strategies may produce it ($\lambda x . \lambda y$. y) Ω
leftmost redex: $\quad(\lambda x . \lambda y . y) \Omega \rightarrow \lambda y . y$ innermost redex: ($\lambda x . \lambda y$. y) $\Omega \rightarrow$

Normalizing Strategy

A reduction strategy is said to be normalizing if it terminates and produces an answer of an expression whenever the expression has an answer.
aka the standard reduction
Theorem: Normal order (left-most) reduction strategy is normalizing for the? λ-calculus.

A Call-by-name Interpreter

Answers: WHNF
Strategy: leftmost redex
$c n(E): \quad$ Definition by cases on E

$$
\begin{aligned}
& E=x|R x . E| E E \\
& \mathrm{cn}(\mathrm{x})=\mathrm{x} \\
& \operatorname{cn}(\lambda x . E)=\lambda x . E \\
& \operatorname{cn}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\text { let } \mathrm{f}=\mathrm{cn}\left(\mathrm{E}_{1}\right) \\
& \text { in } \\
& \text { case } \mathrm{f} \text { of } \\
& \lambda x . E_{3}=\operatorname{cn}\left(E_{3}\left[E_{2} / x\right]\right) \\
& -\quad=\left(f E_{2}\right)
\end{aligned}
$$

A Call-by-value Interpreter

Answers: WHNF
Strategy: leftmost-innermost redex but not inside a λ-abstraction
$c v(E)$: Definition by cases on E $E=x|R x . E| E E$ $\operatorname{cv}(x) \quad=x$
$\operatorname{cv}(\lambda x . E)=\lambda x . E$
$\operatorname{cv}\left(E_{1} E_{2}\right)=$ let $f=\operatorname{cv}\left(E_{1}\right)$
$a=c v\left(E_{2}\right)$
in
case fof
$\lambda x . E_{3}=\operatorname{cv}\left(E_{3}[a / x]\right)$ $=(f a)$

More Facts

For computing WHNF
the call-by-name interpreter is normalizing but the call-by-value interpreter is not
e.g.
($\lambda x . y)((\lambda x . x \times)(\lambda x . x \times))$

