Arvind
Laboratory for Computer Science
M.I.T.

September 9, 2002
inttp://www.csg.lcs.mit. edu/6.827

Explicitly Parallel Fibonacci

C dictates that fib(n-1) be executed before fib(n-2) \Rightarrow annotations (spawns and sync) for parallelism

Alternative: declarative languages

Why Declarative Programming?

- Implicit Parallelism
- language only specifies a partial order on operations
- Powerful programming idioms and efficient code reuse
- Clear and relatively small programs
- Declarative language semantics have good algebraic properties
- Compiler optimizations go farther than in imperative languages

pH is Implicitly Parallel and a Layered Language

Non-Deterministic Extensions - - - -structures
Deterministic Extensions -1 -structures
Purely Functional - higher order - non strict - strongly typed + polymorphic

cleaner semantics
more expressive power

Function Execution by Substitution

```
plus x y = x + y
```

1. plus $23 \rightarrow 2+3 \rightarrow 5$
2. plus (2*3) (plus 4 5)

Blocks

```
let
        \(x=a\) * \(a\)
        \(y=b * b\)
in
    \((x-y) /(x+y)\)
```

- a variable can have at most one definition in a block
- ordering of bindings does not matter

Layout Convention

This convention allows us to omit many delimiters let
in

$$
\begin{aligned}
& x=a * a \\
& y=b * b \\
& (x-y) /(x+y)
\end{aligned}
$$

is the same as

$$
\begin{aligned}
& \text { let } \\
& \text { \{ } x=a * a \text {; } \\
& \mathbf{y}=\mathbf{b} * \mathbf{b} ;\} \\
& \text { in } \\
& (x-y) /(x+y)
\end{aligned}
$$

Lexical Scoping

```
let
\[
\begin{aligned}
& y=2 * 2 \\
& x=3+4
\end{aligned}
\]
\[
z=l e t
\]
\[
x=5 * 5
\]
\[
\hat{w}=x+y * x
\]
in
w
```

in

$$
x+y+z
$$

Lexically closest definition of a variable prevails.
Renaming Bound Identifiers
(α-renaming)

$$
\begin{aligned}
& \text { let } \\
& y=2 \text { * } 2 \\
& x=3+4 \\
& \text { let } \\
& y=2 \text { * } 2 \\
& \text { z }=\text { let } \\
& \text { z = let } \\
& x^{\prime}=5 * 5 \\
& \operatorname{in}^{\mathrm{w}}=\mathrm{x}^{\prime}+\mathrm{y} * \mathrm{x}^{\prime} \\
& \text { in } \\
& x+y+z \\
& \text { in } \\
& x+y+z
\end{aligned}
$$

```
plus x y = x + y
plus' a b = a + b
```

plus and plus'are the same because plus' can be obtained by systematic renaming of bound identifiers of plus

Capture of Free Variables

$$
\begin{aligned}
& \mathbf{f} \mathbf{x}=\cdot \cdot \cdot \\
& \mathbf{g}=\cdot \dot{f}=\dot{f}(\mathbf{x}) \\
& \mathbf{f o o}=\mathbf{x}=
\end{aligned}
$$

Suppose we rename the bound identifier \mathbf{f} to \mathbf{g} in the definition of foo

$$
\begin{aligned}
& f \circ \circ^{\prime} g x=g(g x) \\
& \text { foo } \equiv f \circ \circ^{\prime} ?
\end{aligned}
$$

While renaming, entirely new names should be introduced!

Curried functions

```
plus x y = x + y
let
    f = plus 1
in
    f 3
```


Local Function Definitions

Improve modularity and reduce clutter.

Loops (Tail Recursion)

- Loops or tail recursion is a restricted form of recursion but it is adequate to represent a large class of common programs.
- Special syntax can make loops easier to read and write
- Loops can often be implemented with greater efficiency

```
integrate dx a b f =
            let
                x = a + dx/2
                tot = 0
            in
            (while x <= b do
                    next }\mathbf{x}=\mathbf{x}+\textrm{dx
                    next tot = tot + (f x)
                finally tot) * dx
```


Higher-Order Computation Structures

$$
\begin{aligned}
& \text { apply_n f } n \times \begin{array}{l}
\text { if }(n==0) \text { then } x \\
\text { else apply_n } f(n-1)
\end{array} \\
& \text { succ } x=x+1 \\
& \text { apply_n succ b a ? }
\end{aligned}
$$

mult a b = apply_n

Types
All expressions in pH have a type
$23::$ Int

Type of an expression

```
(sq 529) :: Int
sq :: Int m Int
```

"sq is a function, which when applied to an integer produces an integer."
"Int -> Int is the set of functions which when applied to an integer produce an integer."
"The type of sq is Int -> Int."

Type of a Curried Function

plus x	$y=x+y$
(plus 1) 3	$::$ Int
(plus 1)	$::$ Int \rightarrow Int
plus	$:$

λ-Abstraction

Lambda notation makes it explicit that a value can be a function. Thus,
(plus 1) can be written as $\backslash y$-> ($1+y$)
plus $\mathbf{x} \mathbf{y}=\mathbf{x}+\mathbf{y}$
can be written as

$$
\text { plus }=\backslash x \text {-> } \backslash y \text {-> }(x+y)
$$

or as

$$
\text { plus }=\backslash x y \text {-> }(x+y)
$$

($\backslash \mathbf{x}$ is a syntactic approximation of $\lambda \mathbf{x}$ in Haskell)

Parentheses Convention

```
f e1 e2 \equiv ((fel) e2)
f e1 e2 e3 \equiv(()(f e1) e2) e3)
```

application is left associative
\qquad

Int -> (Int -> Int) \equiv Int -> Int -> Int type constructor "->" is right associative

Type of a Block

provided

$$
\text { e } \quad:: \quad \text { t }
$$

Type of a Conditional

(ifethen e_{1} else e_{2}) : : t
provided

$$
\begin{array}{lll}
\mathbf{e} & :: & \text { Bool } \\
\mathbf{e}_{1} & :: & t \\
\mathbf{e}_{2} & :: & t
\end{array}
$$

The type of expressions in both branches of conditional must be the same.

Polymorphism

```
twice fx=f(f)
```

1. twice (plus 3) 4
```
twice : :
2. twice (appendR "two") "Desmond"

\section*{twice : :}
where appendR "baz" "foo" \(\rightarrow\) "foobaz"

\section*{Deducing Types}
\[
\text { twice } \mathbf{f} \mathbf{x}=\mathbf{f}(\mathbf{f} \mathbf{x})
\]

What is the most "general type" for twice?
1. Assign types to every subexpression
\[
\begin{aligned}
& \mathbf{x} \text { : : to } \\
& \text { f : : t1 } \\
& \text { f } x \text { : : t2 f (f x) : : t3 } \\
& \Rightarrow \text { twice : : t1 -> (t0 } \rightarrow \text { t3) }
\end{aligned}
\]
2. Set up the constraints
\[
\begin{array}{ll}
t 1=t 0 \rightarrow t 2 & \\
t 1=t 2 \rightarrow t 3 & \\
\text { because of }(\mathbf{f} \mathbf{x}) \\
\text { because of } \mathbf{f}(\mathbf{f} \mathbf{x})
\end{array}
\]
3. Resolve the constraints
\[
\text { t0 }->\text { t2 }=t 2 \rightarrow t 3
\]
\(\Rightarrow t 0=t 2\) and \(t 2=t 3 \Rightarrow t 0=t 2=t 3\)
\(\Rightarrow\) twice \(::\) ( \(t 0 \rightarrow t 0\) ) \(\rightarrow\) ( \(t 0 \rightarrow\) t0)
September 9, 2002

\section*{Another Example: Compose}

\section*{compose \(f \mathrm{~g} x=\mathrm{f}(\mathrm{g} \mathbf{x})\)}

What is the type of compose ?
1. Assign types to every subexpression
\(\mathbf{x}:\) : t0 f : : t1 g : : t2
\(g \times:: t 3 \quad f(g x):: t 4\)
\(\Rightarrow\) compose : :

\section*{Hindley-Milner Type System}
pH and most modern functional languages follow the Hindley-Milner type system.

The main source of polymorphism in this system is the Let block.

The type of a variable can be instantiated differently within its lexical scope.
much more on this later ...```

