
L1- 1

Expressing Parallel Computat ion

Arvind

Laboratory for Computer Science

M.I.T.

Lecture 1

http://www.csg.lcs.mit.edu/6.827

L1-2
Arvind

•
symmetric multiprocessors (SMP’s)

Main St r eam Par allel Com put ing

Most “server” class machines these days are

– PC class SMP’s
• 2 to 4 processors
• cheap
• run Windows & Linux
• track technology

– Delux SMP’s
• 8 to 64 processors
• expensive (16-way SMP costs >> 4 x 4-way SMPs)

• Applications
– databases, OLTP, Web servers, Internet commerce...
– potential applications: EDA tools, technical computing,...

http://www.csg.lcs.mit.edu/6.827

L1-3
Arvind

•
processors are build as clusters of SMP’s

Lar ge Scale Par allel Com put ing

Most parallel machines with hundreds of

– usually custom built with government funding
– expensive: $10M to $100M
– are treated as a national or international resource
– Total sales are a tiny fraction of “server” sales
– hard time tracking technology

• Applications
– weather and climate modeling
– drug design
– code breaking (NSA, CIA, ...)
– basic scientific research
– weapons development

Few independent software developers;
Programmed by very smart people

http://www.csg.lcs.mit.edu/6.827

L1-4
Arvind

Paucit y of Par allel Applicat ions

•	 Applications follow cost-effective hardware
which has become available only since 1996

•	 Important applications are hand crafted
(usually from their sequential versions) to run
on parallel machines
– explicit, coarse-grain multithreading on SMP’s

• most business applications
– explicit, coarse-grain message passing on large clusters

• most technical/scientific applications

• Technical reasons:
– automatic parallelization is difficult
– parallel programming is difficult
– parallel programs run poorly on sequential machines

Can the entry cost of parallel programming be lowered?

http://www.csg.lcs.mit.edu/6.827

L1-5
Arvind

Why not use sequent ial languages ?

Algorithm with parallelism

encode

Program with sequential semantics

detect parallelism

Parallel code

http://www.csg.lcs.mit.edu/6.827

L1-6
Arvind

Mat r ix Mult iply

C = A x B Ci,j =
k

Ai,k Bk,j

All Ci,j 's can be computed in parallel.

In fact, all multiplications can be done in parallel!

Fortran
do i = 1,n

do j = 1,n

do k = 1,n

s = s + A(i,k)*B(k,j)

continue

C(i,j) = s

continue
continue Parallelism?

http://www.csg.lcs.mit.edu/6.827

L1-7
Arvind

Par allelizing Com piler s

After 30 years of intensive research

•	 only limited success in parallelism detection
and program transformations
–	 instruction- level parallelism at the basic-block level can

be detected
–	 parallelism in nested for- loops containing arrays with

simple index expressions can be analyzed
–	 analysis techniques, such as data dependence analysis,

pointer analysis, flow sensitive analysis, abstract
interpretation, ... when applied across procedure
boundaries often take far too long and tend to be fragile,
i.e., can break down after small changes in the
program.

•	 instead of training compilers to recognize
parallelism, people have been trained to
write programs that parallelize

http://www.csg.lcs.mit.edu/6.827

L1-8
Arvind

Par allel Pr ogr am m ing Models

If parallelism can’t be detected in sequential
programs automatically then design new parallel
programming models ...

• High- level
– Data parallel: Fortran 90, HPF, ...
–	 Multithreaded: Cid, Cilk,...

Id, pH, Sisal, ...

• Low- level
– Message passing: PVM, MPI, ...
–	 Threads & synchronization:

Futures, Forks, Semaphores, ...

http://www.csg.lcs.mit.edu/6.827

L1-9
Arvind

Pr oper t ies of Models

Determinacy - is the behavior of a program
repeatable?

Compositionality - can independently created
subprograms be combined in a meaningful way?

Expressiveness - can all sorts of parallelism
be expressed?

Implementability - can a compiler generate
efficient code for a variety of architectures?

http://www.csg.lcs.mit.edu/6.827

?

L1-10
Arvind

Safer Way s of Expr essing Par allelism

Data parallel: Fortran 90, HPF, ...
- sources of parallelism: vector operators, forall
- communication is specified by shift operations.

Implicit Parallel Programming: Id, pH, Sisal, ...
- functional and logic languages specify only a partial
order on operations.

Determinacy of programs is guaranteed
???⇒?easier debugging !!!

Programming is independent of machine
configuration.

http://www.csg.lcs.mit.edu/6.827

L1-11
Arvind

Dat a Par allel Pr ogr am m ing Model

All data structures are assigned to a•	 communicate
grid of virtual processors.

•	 Generally the owner processor computes
the data elements assigned to it.

(global)

compute

•	 Global communication primitives allow
processors to exchange data.

(local)

communicate
•	 Implicit global barrier after each

communication.

• All processors execute the same program .
compute

(global)

(local)

http://www.csg.lcs.mit.edu/6.827

L1-12
Arvind

Dat a Par allel Mat r ix Mult iply

Real Array(N,N) :: A, B, C

Layout A(:NEWS, :NEWS), B(:NEWS, :NEWS)

each element is on a
virtual processor of
2D grid

a

C(:NEWS, :NEWS)

... set up the initial distribution of data elements ...

Do i = 1,N-1

!Shift rows left and columns up

A = CShift(A, Dim=2, Shift=1)

B = CShift(B, Dim=1, Shift=1)

C = C + A * B

communication

End Do

data parallel
operations

Connection

Machine

Fortran

http://www.csg.lcs.mit.edu/6.827

L1-13
Arvind

+ Good implementations
available

- Difficult to write programs

+ Easy to debug programs
because of a single thread

+ Implicit synchronization
and communication

- Limited compositionality!

communicate

compute

communicate

compute

?
are

Data Parallel Model

For general-purpose programming, which has more
unstructured parallelism, we need more flexibility in
scheduling.

http://www.csg.lcs.mit.edu/6.827

L1-14
Arvind

Fully Par allel, Mult it hr eaded Model

Tree of Global Heap of
Shared ObjectsActivation

Frames

h:g:

f:

loop

threads

asynchronous
at all levels

active

http://www.csg.lcs.mit.edu/6.827

L1-15
Arvind

Explicit vs I m plicit Mult it hr eading

Explicit:
–	 C + forks + joins + locks

multithreaded C: Cid, Cilk, ...

– easy path for exploiting coarse-grain parallelism
in existing codes

error-prone if locks are used

Implicit:
– languages that specify only a partial order on

operations
functional languages: Id, pH, ...

–	 safe, high- level, but difficult to implement
efficiently without shared memory & ...

http://www.csg.lcs.mit.edu/6.827

L1-16
Arvind

Explicit ly Parallel Matrix Mult iply

cilk void

matrix_multiply(int** A, int** B, int** C,

int n)

{	 ...

...

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

C[i][j] = spawn IP(A, B, i, j, n);

sync;

...

...

}

int IP(...) { ... }
 Cilk program
http://www.csg.lcs.mit.edu/6.827

L1-17
Arvind

I m plicit ly Par allel Mat r ix Mult iply

make_matrix ((1,1),(n,n)) f

where f is the filling function

\(i,j).(IP (row i A) (column j B))

make_matrix does not specify the order in which
the matrix is to be filled!

no implication regarding the distribution of
computation and data over a machine.

pH program
http://www.csg.lcs.mit.edu/6.827

L1-18
Arvind

I m plicit ly Par allel Languages

Expose all types of parallelism,
permit very high level programming

but

may be difficult to implement efficiently

Why?
– some inherent property of the language?
– lack of maturity in the compiler?
– the run- time system?
– the architecture?

http://www.csg.lcs.mit.edu/6.827

L1-19
Arvind

Future

Id

multithreaded intermediate language

HPF Cilk pH

notebooks SMPs MPPs

Freshman will be taught sequential programming
as a special case of parallel programming

http://www.csg.lcs.mit.edu/6.827

L1-20
Arvind

6.827

Mult ithreaded Languages and Com pilers

This subject is about
• implicit parallel programming in pH
•	 functional languages and the λ calculus

because they form the foundation of pH
•	 multithreaded implementation of pH aimed

at SMP’s
•	 some miscellaneous topics from functional

languages, e.g., abstract implementation,
confluence, semantics, TRS...

This term I also plan to give 6 to 8 lectures on Bluespec,
a new language for designing hardware. Bluespec also
boroughs heavily from functional languages but has a

completely different execution model.
http://www.csg.lcs.mit.edu/6.827

