
1

What is Artificial Intelligence (AI)?

Lecture 1 • 1

6.825 Techniques in Artificial Intelligence

If you're going to teach or take an AI course, it's useful to ask: "What's AI?"

It's a lot of different things to a lot of different people. Let's go through a few
things that AI is thought to be and situate them within the broader picture of
AI.

2

What is Artificial Intelligence (AI)?

•

Lecture 1 • 2

6.825 Techniques in Artificial Intelligence

Computational models of human behavior?
• Programs that behave (externally) like humans

One thing it could be is "Making computational models of human behavior".
Since we believe that humans are intelligent, therefore models of intelligent
behavior must be AI. There's a great paper by Turing who really set up this
idea of AI as making models of human behavior (link). In this way of thinking
of AI, how would you proceed as an AI scientist? One way, which would be
a kind of cognitive science, is to do experiments on humans, see how they
behave in certain situations and see if you could make computers behave in
that same way. Imagine that you wanted to make a program that played
poker. Instead of making the best possible poker-playing program, you
would make one that played poker like people do.

3

What is Artificial Intelligence (AI)?

•

•
processes?

Lecture 1 • 3

6.825 Techniques in Artificial Intelligence

Computational models of human behavior?
• Programs that behave (externally) like humans

Computational models of human “thought”

• Programs that operate (internally) the way humans do

Another way is to make computational models of human thought processes.
This is a stronger and more constrained view of what the enterprise is. It is
not enough to make a program that seems to behave the way humans do;
you want to make a program that does it the way humans do it. A lot of
people have worked on this in cognitive science and in an area called
cognitive neuroscience. The research strategy is to affiliate with someone
who does experiments that reveal something about what goes on inside
people's heads and then build computational models that mirror those kind
of processes.
A crucial question is to decide at what level to mirror what goes on inside
people's heads. Someone might try to model it a very high-level, for
example, dividing processing into high-level vision, memory, and cognition
modules; they try to get the modularity to be accurate but they don't worry
too much about the details of how the modules are implemented. Other
people might pick the neuron as a kind of computational unit that feels like
it's justified in terms of neurophysiology, and then take that abstract neuron
and make computational mechanisms out of it. It seems justified because
we know that brains are made out of neurons. But then, if you talk to people
that study neurons, you find that they argue a lot about what neurons can
and can't do computationally and whether they are a good abstraction so
maybe you might want to make your models at a lower level. So, it’s hard to
know how to match up what we know about brains with computational
models.

4

What is Artificial Intelligence (AI)?

•

•
processes?

•

Lecture 1 • 4

6.825 Techniques in Artificial Intelligence

Computational models of human behavior?
• Programs that behave (externally) like humans

Computational models of human “thought”

• Programs that operate (internally) the way humans do

Computational systems that behave intelligently?
• What does it mean to behave intelligently?

Another thing that we could do is build computational systems that behave
intelligently. What do we mean here? When we talked about human
behavior, we said that it was intelligent because humans are intelligent (sort
of by definition), so what humans do has to be intelligent. In this view, we
say that there might be other ways of being intelligent besides the way
humans do it. And so what we might want to do is make computational
systems drawn from this larger class. But then you get into terrible trouble
because you have to say what it means to behave intelligently. We might
feel that although we can't define what it is to be intelligent, we can
recognize it when we see it. We'll give up on trying to decide what
intelligence is and spend our time thinking about rationality. What might it
mean to behave rationally? We'll get into that in more detail later.

5

What is Artificial Intelligence (AI)?

•

•
processes?

•

• !

Lecture 1 • 5

6.825 Techniques in Artificial Intelligence

Computational models of human behavior?
• Programs that behave (externally) like humans

Computational models of human “thought”

• Programs that operate (internally) the way humans do

Computational systems that behave intelligently?
• What does it mean to behave intelligently?

Computational systems that behave rationally
• More on this later

So, the perspective of this course is that we are going to build systems that
behave rationally - that do a good job of doing what they're supposed to do
in the world. But, we're not going to feel particularly bound to respect what is
known about how humans behave or function. Although we're certainly quite
happy to take inspiration from what we know.

6

What is Artificial Intelligence (AI)?

•

•
processes?

•

• !

•

Lecture 1 • 6

6.825 Techniques in Artificial Intelligence

Computational models of human behavior?
• Programs that behave (externally) like humans

Computational models of human “thought”

• Programs that operate (internally) the way humans do

Computational systems that behave intelligently?
• What does it mean to behave intelligently?

Computational systems that behave rationally
• More on this later

AI applications
• Monitor trades, detect fraud, schedule shuttle loading, etc.

There's another part of AI that we will talk about in this class that's fundamentally about
applications. Some of these applications you might not want to call "intelligent" or "rational"
but it is work that has traditionally been done in the field of AI. Usually, they are problems in
computer science that don't feel well specified enough for the rest of the computer science
community to want to work on. For instance, compilers used to be considered AI, because
you were writing down statements in a high-level language; and how could a computer
possibly understand that stuff? Well, you had to do work to make a computer understand the
high-level language and that was taken to be AI. Now that we understand compilers and
there's a theory of how to build compilers and lots of compilers are out there, well, it's not AI
any more. So, AI people have a chip on their shoulders that when they finally get something
working it gets co-opted by some other part of the field. So, by definition, no AI ever works;
if it works, it's not AI.
But, there are all kinds of applications of AI. Many of these are applications of learning,
which is my field of research and for which I have a soft spot in my heart. For example,
NASDAQ, the stock exchange, now monitors trades to see if insider trading is going on,
Visa now runs some kind of neural network program to detect fraudulent transactions,
people do cell-phone fraud detection through AI programs, scheduling is something that
used to be AI and is now evolving out of AI (and so it doesn't really count). It includes things
like scheduling operations in big manufacturing plants; NASA uses all kind of AI methods
(similar to the ones we're going to explore in the first homework) to schedule payload bay
operations: getting the space shuttle ready to go is a big and complicated process and they
have to figure out what order to do all the steps. There are all kinds of applications in
medicine. For example, in managing a ventilator, a machine that is breathing for a patient,
there are all kinds of issues of how to adjust various levels of gases, monitor pressure, etc.
Obviously, you could get that very badly wrong and so you want a system that's good and
reliable. There are long lists of examples; AI applications are very viable.
We're going to spend most of our time thinking, or at least feeling motivated, by
computational systems that behave rationally. But a lot of the techniques that we will be
talking about will end up serving a wide variety of application goals as well.
That's my story about what we're up to in this course.

7

Agents

information.

•
•
•

Lecture 1 • 7

Software that gathers information about an
environment and takes actions based on that

• a robot
a web shopping program
a factory
a traffic control system…

We're going to be talking about agents. This word used to mean “something
that acts.” Now, people talk about Web agents that do things for you, or
human publicity agents. When I talk about agents, I mean something that
acts. So, it could be anything from a robot, to a piece of software that runs
in the world and gathers information and takes action based on that
information, to a factory, to all the airplanes belonging to United Airlines. So,
I will use that term very generically. When I talk about computational agents
that behave autonomously, I'll use agent as a shorthand for that.

8

The Agent and the Environment

Lecture 1 • 8

How do we begin to formalize the problem of building
an agent?

• Make a dichotomy between the agent and its environment
• Not everyone believes that making this dichotomy is a

good idea, but we need the leverage it gives us.

So, how do we think about agents? How can we begin to formalize the
problem of building an agent? Well, the first thing that we're going to do,
which some people object to fairly violently, is to make a dichotomy between
an agent and its environment. There are people in AI that want to argue
that this is exactly the wrong thing to do; that I shouldn't try to give an
account of how an agent works by separating it from the world it works in,
because the interface is so big and so complicated. And that may be right.
That I can't get exactly right a description of how the agent needs to operate
in the world by separating it from the world. But, it gives me a kind of
leverage in designing the system that I need right now because I, as the
designer of the system, am not smart enough to consider the system as a
whole.

9

environment

percepts

agent

The Agent and the Environment

Lecture 1 • 9

actions

How do we begin to formalize the problem of building
an agent?

• Make a dichotomy between the agent and its environment
• Not everyone believes that making this dichotomy is a

good idea, but we need the leverage it gives us.

Here's a robot and the world it lives in. The robot is going to take actions
that affect the state of the environment and it's going to receive percepts
somehow that tell it about what's going on in the environment. There is a
loop where the agent does something that changes the state of the
environment, then it perceives some new information about the state of the
environment. There's a hard question of where to draw the line between the
agent and the environment. In this class, we'll spend our entire time thinking
about the agent as a computational entity. So, I should really draw this
cartoon differently. Since we're going to be thinking about what is going on
in the agent’s head and so the actions, instead of going from the body to the
environment, are going to be going from the agent's head to its wheels and
the percepts are coming from the camera into its brain.

10

environment

percepts

agent

The Agent and the Environment

Lecture 1 • 10

actions

How do we begin to formalize the problem of building
an agent?

• Make a dichotomy between the agent and its environment
• Not everyone believes that making this dichotomy is a

good idea, but we need the leverage it gives us.

And, so, here's another view of the world. We're going to be thinking about
the agent as the software that runs some big hardware system. That is not
to make light of or say that it's easy to design the hardware part, and
depending on how the hardware part has been designed your problem could
be made arbitrarily easier or harder.
An example of this is making a walking robot. How hard that job is depends
on the design of the hardware. There are these great walking robots, called
"compass walkers", that are just two legs hinged together and when you set
them on an inclined plane they will walk down the hill (if you get it balanced
right); so you don't need any computation at all to do that walking. So, the
computation, or intelligence or whatever, is in the design of the hardware.
On the other hand, you could build a great big contraption, as some
researchers have, with six or eight legs that is taller than this room and it
runs a whole complicated planning algorithm to decide where to place each
foot. That's the opposite extreme of putting all the intelligence in the brain,
instead of in the hardware.
We're going to try to be agnostic about the design of the hardware and work
with people who do a good job of that, and take as given the computational
problems it generates. How can we formalize a computational problem of
building an agent?

11

Lecture 1 • 11

World Model

What do we need to write down when we talk about the problem of making
an agent? How can we specify it really carefully?

12

Lecture 1 • 12

World Model

• A – the action space

First, we're going to need an action interface. These all the things that my
agent can do. The space of actions might be continuous, or it might be very
high dimensional, but there's some space of possible actions that the agent
can take in the world.

13

Lecture 1 • 13

World Model

• A – the action space
• P – the percept space

Next, we need a percept space: what are all the things that the agent can
perceive in the world? These spaces can be continuous; you can imagine
that the agent can perceive how high its arm is raised or the temperature in
some reaction vessel.
We're going to assume a model in which the turn-taking between agent and
environment takes place in discrete time. I drew this picture of the
interaction between the agent and its environment and I said that the agent
takes an action and the environment updates its state and then the agent
observes. You could imagine modeling this as a set of coupled differential
equations, and there are people who do that for fairly simple and low-level
systems; but we're going to think of things rather more discretely and so
we're going to model the interaction between the agent and the environment
in discrete time, with a cycle taking place every one second or two seconds
or ten seconds or ten minutes. Time won't enter too much in the methods
we'll talk about, but it will a bit and it's something that's really important to
keep in the back of our minds.

14

• A* → P

Lecture 1 • 14

World Model

• A – the action space
• P – the percept space

E – the environment:

Now, we have a set of actions and a set of percepts and we need the
environment. We need, in order to say what the problem is for our agent, to
describe the world that the agent lives in. At the most detailed level, we can
think of the environment as being a mapping of strings of actions into
percepts. You could say, what does the environment do? Well, there's
some history of actions that the agent has done to it and every time the
agent does a new action, the environment generates a percept. That's not a
very helpful way of thinking about it.

15

• A* → P

•
•
• → P
• × A → S

a

s

p

Lecture 1 • 15

World Model

• A – the action space
• P – the percept space

E – the environment:

Alternatively, define
S – internal state [may not be visible to agent]
Perception function: S
World dynamics: S

World
Dynamics

Perception
Function

Usually we'll think of the environment as having some internal state, which
may not be visible to the agent. We can describe how the environment
works by specifying two functions. The perception function says what
percepts the agent will receive as a function of the current state of the
environment. And the world dynamics or state transition function says what
the next world state will be, given the previous world state and the action
taken by the agent.
Later on we'll talk in detail about the fact that these functions may not be
deterministic and they may not really be known. Suppose you wanted to
make a robot that could vacuum the hallways or something in this building.
You'd like not to have to completely specify how this building is laid out and
where the chairs are and who has a backpack on the floor today. So, in fact,
rather than giving a complete, perfectly nailed-down description of how the
environment works, in general when we specify the problem of designing an
agent, we'll give some constraints, just parts of a specification of how the
environment works; and we’ll leave the agent to fill in the details through
perception and learning.

16

• → R * → R)

Lecture 1 • 16

Agent Design
U – utility function: S (or S

So far, we have no value judgments. We're describing a set of worlds that
the agent has to work in. And we also have to say what we want the agent
to do; what constitutes good or bad behavior of the agent in the environment.
We need a utility function. It’s typically thought of as a mapping from states
in the world to real values, or maybe sequences of states into real values. It
is meant to say, "Agent, these are the states of the world and this is how
valuable they are from your perspective." So that indirectly tells the agent
what you want it to do.

17

• → R * → R)
• * → A

Lecture 1 • 17

Agent Design
U – utility function: S (or S
The agent design problem: Find P

• mapping of sequences of percepts to actions
• maximizes the utility of the resulting sequence of states

(each action maps from one state to next state).

Now, our problem, as people who want to design AI systems, is to build the
agent (the software) in such a way as to get a lot of utility. So, now we just
have an optimization problem: that doesn't seem so hard. Well, it's going to
turn out to be really quite hard. But, at this level of abstraction, it's
straightforward what we want to do. We want to put the program in the head
of the agent that does as well as it can, subject to this specification of how
the world works and what we want in the world.

18

Rationality

• A rationa it believes will
.

that rational?

it.

Lecture 1 • 18

l agent takes actions
achieve its goals

• Assume I don’t like to get wet, so I bring an umbrella. Is

• Depends on the weather forecast and whether I’ve heard
If I’ve heard the forecast for rain (and I believe it) then

bringing the umbrella is rational.

Let's talk about rationality, since I said that what we wanted to do was to
make rational agents. So, what do I mean by that? The standard definition
of rationality is: A rational agent takes actions it believes will enable it to
achieve its goals. This is all in high-level pseudo-psychological talk that
makes some people nervous. We can cache it out into something more
concrete in a minute but the idea is that you're rational if you take actions
that are consistent with what you are trying to achieve in the grand scheme
of things.
Let's say that I don't like to be wet and so when I come out of my office in the
morning, I bring an umbrella. Is that rational? Depends on the weather
forecast, and whether I've heard the weather forecast. If I heard the weather
forecast and I'm disposed to believe it, and I think it's going to rain, then it's
rational to bring my umbrella. Whether it's going to rain or not, whether you
think it's dumb for me to want to stay dry, given what I'm trying to do and
given what I know, we'll say an action is rational if it would lead to doing a
good job of what I'm trying to do.

19

Rationality

• A rationa it believes will
.

that rational?

it.

• ≠

rational?

Lecture 1 • 19

l agent takes actions
achieve its goals

• Assume I don’t like to get wet, so I bring an umbrella. Is

• Depends on the weather forecast and whether I’ve heard
If I’ve heard the forecast for rain (and I believe it) then

bringing the umbrella is rational.

Rationality omniscience
• Assume the most recent forecast is for rain but I did not

listen to it and I did not bring my umbrella. Is that

• Yes, since I did not know about the recent forecast!

Rationality is not omniscience. For example, some time ago I rode my bike
in to work, not knowing that it was going to snow like crazy and I was going
to run into a car on the way home. You can still argue that it was rational for
me to ride my bike, maybe at some grander level it was irrational not to have
watched the weather forecast the night before. But, given what I knew it was
ok to ride my bike, even though it turned out be dumb at some level,
because I didn't know what was happening.

20

Rationality

• A rationa it believes will
.

that rational?

it.

• ≠

rational?

• ≠

rational?

Lecture 1 • 20

l agent takes actions
achieve its goals

• Assume I don’t like to get wet, so I bring an umbrella. Is

• Depends on the weather forecast and whether I’ve heard
If I’ve heard the forecast for rain (and I believe it) then

bringing the umbrella is rational.

Rationality omniscience
• Assume the most recent forecast is for rain but I did not

listen to it and I did not bring my umbrella. Is that

• Yes, since I did not know about the recent forecast!

Rationality success
• Suppose the forecast is for no rain but I bring my umbrella

and I use it to defend myself against an attack. Is that

• No, although successful, it was done for the wrong reason.

Also, rationality is not the same as success. Imagine that I take my umbrella,
I know that it's nice and sunny out and I take the umbrella anyway, which
seems to be irrational of me. But, then, I use the umbrella to fend off a rabid
dog attack. You might say, well it was rational of her to take the umbrella
because it saved her from the rabid dog. But that wouldn't be right because
it was done for the wrong reason. Even though it was successful and useful;
we would not have said that was rational. So this limits the scope of what we
want our agents to do. They don't have to be successful and they don't have
to know everything, they just have to do a good job given what they know
and what they want.

21

Limited Rationality

•
rationality…

Lecture 1 • 21

There is a big problem with our definition of

This is still not a good enough notion to decide what should go in the head of
our agent or our robot. Do you see any potential problem with this as a
criterion for behavior in real systems?

22

Limited Rationality

•
rationality…

•

Lecture 1 • 22

There is a big problem with our definition of

The agent might not be able to compute the best
action (subject to its beliefs and goals).

You might not be able to compute the best thing to do.

23

Limited Rationality

•
rationality…

•

• limited rationality: “acting in

Lecture 1 • 23

There is a big problem with our definition of

The agent might not be able to compute the best
action (subject to its beliefs and goals).
So, we want to use
the best way you can subject to the computational
constraints that you have”

There's a notion that the philosophers have pursued, and so have AI people.
Instead of complete or perfect rationality, they talk of limited rationality. And
that means exactly "acting in the best way you can subject to the
computational constraints that you have." Here we are with soft squishy
slow brains that can't compute very well or very fast and so, for instance,
humans are irrational because they're bad at doing a variety of tasks; they
just can't compute the optimal response in certain circumstances. That we
know; there's no question; but yet, you might be able to argue that given our
squishy brains that's the best we can do.
In addition, for this idea of limited rationality, you need to put a program in
the agent's head that's going to last for the agent's whole range of things it
has to do and life it has to live. And it might be that, although the brain could
conceivably compute the optimal action in one circumstance, it may not in
another. So, we might be able to make a robot that's the best possible
chess player, but it might not be able to cross the street. If our robot needs
to be able to cross the street, its aggregate behavior is not rational. So,
when we think about rationality we may we want to think about it in a much
broader context: given all the things that you have to do, given all the
circumstances that you're likely to be faced with in the environment that
you’ve been put in, how can you respond best in the aggregate? Any
individual response may not be the best response, even given your
hardware, but it may still be that the program you're running is the best
possible program when measured in aggregate over all the things that you
have to do.

24

Limited Rationality

•
rationality…

•

• limited rationality: “acting in

•
Find P* → A

Lecture 1 • 24

There is a big problem with our definition of

The agent might not be able to compute the best
action (subject to its beliefs and goals).
So, we want to use
the best way you can subject to the computational
constraints that you have”
The (limited rational) agent design problem:

• mapping of sequences of percepts to actions
• maximizes the utility of the resulting sequence of states
• subject to our computational constraints

Ultimately, what we need to do is make is an agent program. Given the
specification of an environment, we want to find the best possible mapping
from P* to A (sequences of percepts to actions) that, subject to our
computational constraints, does the best job it can as measured by our utility
function.

25

Issues

•

Lecture 1 • 25

How could we possibly specify completely the
domain the agent is going to work in?

• If you expect a problem to be solved, you have to say
what the problem is!

• Specification is usually iterative: Build agent, test, modify
specification

Let's imagine that someone was given the job of writing a specification of the
environment that we want our agent to work in. You could say: "Oh, but you
can't do that. This whole approach seems pretty silly because how is it that
anyone could specify the domain that the agent is going to work in?" It does
seem hard to write down a specification of the environment, but it’s
necessary because if you ask me to solve a problem then you have to tell
me what problem you want me to solve. So, you might imagine that this
whole process is going to operate in a much larger context that's iterative.
You give me a specification of the environment you want the robot to work
in; I work away to give you the maximally rational robot given your
specification; then we start running it and you tell me "Darn, I forgot to tell
you about not vacuuming the cat." Then you would have to go back and
redesign the robot software. In any real application you have this cycle at a
high level. But, I don't think you can get out of saying: "Here's what I want
the system to do."

26

Issues

•

•

program

Lecture 1 • 26

How could we possibly specify completely the
domain the agent is going to work in?

• If you expect a problem to be solved, you have to say
what the problem is!

• Specification is usually iterative: Build agent, test, modify
specification

Why isn’t this “just” software engineering?
• There is a huge gap between specification and the

Given a specification for the environment and the utility function, it seems
like our problem is "just" one of coming up with a program that satisfies
some specifications. It seems like you could go study that in software
engineering. But, why not? Why is this not just software engineering? Any
of us would be hard-pressed, given all the pieces of the space shuttle and
constraints on how they go together, to sit in a chair and write the program
that is optimal given all those constraints. The problem is that, although
information theoretically this is a specification for the correct program, it is
not an effective specification. It's not a specification that the computer can
use. There is a huge gap between the specification for what you want the
agent to do and what you can write down in a program and actually have
run. How do we bridge this gap?

27

Issues

•

•

program

•

Lecture 1 • 27

How could we possibly specify completely the
domain the agent is going to work in?

• If you expect a problem to be solved, you have to say
what the problem is!

• Specification is usually iterative: Build agent, test, modify
specification

Why isn’t this “just” software engineering?
• There is a huge gap between specification and the

Isn’t this automatic programming?
• It could be, but AP is so hard most people have given up
• We’re not going to construct programs automatically!
• We’re going to map classes of environments and utilities to

structures of programs that solve that class of problem

There is a part of AI that still goes on (in some places) but people don't talk
about much, called "automatic programming". In fact, quite a while ago
there was a project going on here in the AI Lab called "The programmer's
assistant". It was supposed to enable you to say "I need a linked list of
records..." or "Put these things in a hash table..." You would give it
instructions at a very high level and it was supposed to write the code for
you. The idea in automatic programming was that you would go from some
declarative specification of what you wanted the system to do to actual code
to do it. But, it's a really hard problem and most people have given up on it.
Unfortunately, it seems that's the problem we are faced with here. But, we're
not going to do this automatically. So, what's the enterprise that we're going
to be engaged in? We're going to look at classes of environment
specifications and utility functions and try to map from classes of
environments to structures of programs. To try to say that "if you need an
agent to try to solve this class of problem in that kind of environment, then
here is a good way to structure the computation."

28

think?

Lecture 1 • 28

Thinking

• Is all this off-line work AI? Aren’t the agents supposed to

This doesn't feel a lot like AI. We tend to have the idea that AI is about
agents thinking in their heads figuring out what they're supposed to do. The
approach I’ve described so far is entirely off-line. Someone is “playing God,”
doing all the figuring and blasting the program into the head of the robot.

29

think?

*→

think?

Lecture 1 • 29

Thinking

• Is all this off-line work AI? Aren’t the agents supposed to

• Why is it ever useful to think? If you can be endowed with an
optimal table of reactions/reflexes (P A) why do you need to

The question we want to ask ourselves is "Why is it ever useful to think?" If
all these thought processes could happen off-line and you could just be
endowed with the optimal set of reflexes, then who needs cogitation? Why
can't we (for you or a big complicated factory) compile a whole table of
reactions? One problem could be that the environment is changing. But
even if it isn’t…

30

think?

*→

think?

Lecture 1 • 30

Thinking

• Is all this off-line work AI? Aren’t the agents supposed to

• Why is it ever useful to think? If you can be endowed with an
optimal table of reactions/reflexes (P A) why do you need to

• The table is too big! There are too many world states and too
many sequences of percepts.

The problem is that the table is too big. If P is any size at all or if you live for
very long, the table is way too big. Way, way too big. There are too many
ways the world could be, there are too many sequences of percepts that you
could have of the world. There is no way that you could, off-line, anticipate
them.

31

think?

*→

think?

Lecture 1 • 31

Thinking

• Is all this off-line work AI? Aren’t the agents supposed to

• Why is it ever useful to think? If you can be endowed with an
optimal table of reactions/reflexes (P A) why do you need to

• The table is too big! There are too many world states and too
many sequences of percepts.

• In some domains, the required reaction table can be specified
compactly in a program (written by a human). These are the
domains that are the target of the “Embodied AI” approach.

Actually, for some domains you can write a program that compactly
implements the same function as the table of reactions. Such domains are
targets of the “Embodied AI” approach.
There are really two fundamental differences between their approach and
ours. One is that the Embodied AI people actually take as one of their
constraints that the mechanisms that they develop be related to the
mechanisms that go on in nature. Another difference is that they entertain a
different class of problems and the class of problems that they entertain is
amenable to direct programming of reactions. It's not approached quite so
formally, but the way it works is that a human thinks about a problem, figures
out how the program ought to be structured, and writes the program. But
that program, when it runs, is pretty direct; it gets the percepts and computes
an action. It doesn't seem like it “thinks” (whatever that might mean to us); it
doesn't entertain alternative realities. There is certainly a class of problems
for which you can't make a table but you can write a fairly compact program
that would do the job of being the table. But there are other domains in
which you quite clearly can't do that and those are the domains that we are
going to focus on.

32

think?

*→

think?

Lecture 1 • 32

Thinking

• Is all this off-line work AI? Aren’t the agents supposed to

• Why is it ever useful to think? If you can be endowed with an
optimal table of reactions/reflexes (P A) why do you need to

• The table is too big! There are too many world states and too
many sequences of percepts.

• In some domains, the required reaction table can be specified
compactly in a program (written by a human). These are the
domains that are the target of the “Embodied AI” approach.

• In other domains, we’ll take advantage of the fact that most
things that could happen – don’t. There’s no reason to pre
compute reactions to an elephant flying in the window.

In domains where you can't think of a compact way to write this program
down, this mapping from strings of perceptions to actions, we'll have to think
of other ways to construct this program. The other ways of constructing this
program are going to take advantage of the fact that the vast majority of the
things that could happen, don't. Think of all the ways the world could be,
there are a lot of percept sequences that you could conceivably have and no
matter how long you live you are going to have only the most minuscule
fraction of all the percepts you could possibly have. Given that, there's no
reason to have precomputed and stored reactions for every possible
situation. So, you probably don't have precompiled reactions for what to do
if an elephant flies in through the window; on the other hand, if one did ,you
wouldn't be totally incapacitated (like you would be if you were under the
elephant). You'd say "oh, my gosh" and then your brain would kick in and
you'd start figuring out what to do about it. So, you could respond very
flexibly to a very broad range of stimuli but there's no way that you could
have stored your responses to them.

33

Learning

Lecture 1 • 33

• What if you don’t know much about the environment when
you start or if the environment changes?

• Learn!
• We’re sending a robot to Mars but we don’t know the coefficient

of friction of the dust on the Martian surface.
• I know a lot about the world dynamics but I have to leave a free

parameter representing this coefficient of friction.

Let me talk a bit about learning; we're going to talk about learning towards
the end of this class. So, what happens when the environment changes?
When I talk to people about why it's important to build systems that learn, I
say "maybe you don't know very much about the environment when you start
out or maybe the environment changes" and so you have to do learning.
And it seems that I haven't accounted for that in this framework for
specifying environments and utility functions.
But I have accounted for it, because I've said so very little about what this
kind of specification might be. So, let's take a very simple case. Imagine
that we're sending a robot to Mars and we don't know the coefficient of
friction of the dust it's going to land on; they don't know what it feels like to
drive around in that stuff. I could still say: "Look, I know something about
this place we're going to send the vehicle to. It's going to have gravity, I
know what the gravity is going to be like, I know what's going to go on there;
I know a lot about the vehicle; but I don't know the coefficient of friction of the
dust.

34

Learning

estimate the missing details in the world dynamics.

Lecture 1 • 34

• What if you don’t know much about the environment when
you start or if the environment changes?

• Learn!
• We’re sending a robot to Mars but we don’t know the coefficient

of friction of the dust on the Martian surface.
• I know a lot about the world dynamics but I have to leave a free

parameter representing this coefficient of friction.

• Part of the agent’s job is to use sequences of percepts to

Instead of giving the complete world dynamics; I'm going to have to leave a
free parameter or some disjunction (the world is either going to be like this or
like that and I don't know which). And then part of the job of the agent is,
based on the sequence of percepts that it has, to estimate or to learn or to
gather information about the dynamics of the world. If the domain
specification doesn't have to be complete, then the agent is allowed to learn
something about how the world works. Similarly, I can build into this
specification that there is a coefficient of friction that changes over time but I
don't know how it changes. So, learning can fit into our framework, too.

35

Learning

estimate the missing details in the world dynamics.

Lecture 1 • 35

• What if you don’t know much about the environment when
you start or if the environment changes?

• Learn!
• We’re sending a robot to Mars but we don’t know the coefficient

of friction of the dust on the Martian surface.
• I know a lot about the world dynamics but I have to leave a free

parameter representing this coefficient of friction.

• Part of the agent’s job is to use sequences of percepts to

• Learning is not very different from perception, they both find
out about the world based on experience.

• Perception = short time scale (where am I?)
• Learning = long time scale (what’s the coefficient of

friction?)

In some sense, learning isn't very different from perception: they both
require gaining information about the world by virtue of your experience. We
tend to call "learning" things that happen on larger time-scales; things that
seem more permanent. And we tend to call perception, things like noticing
where I am with respect to a wall; things that are on a shorter time scale;
things that don't seem so built-in. But there is no hard and fast distinction
between learning and perceiving.

36

Lecture 1 • 36

Classes of Environments

Let's think about environments and the different kinds of environments that
our agents might need to work in. Now, a large part of this course will
involve thinking about particular properties of the environment that we know
hold, and what consequences they might have on how it is that we would
design an agent to perform well in that environment. There is a nice list that
comes out of Russell & Norvig (our textbook) of dimensions for
characterizing environments.

37

•

Lecture 1 • 37

Classes of Environments

Accessible (vs. Inaccessible)
• Can you see the state of the world directly?

One dimension along which it is useful to categorize environments is
whether they are "accessible". The question is "Can you see the state of the
world directly?". Most real environments are inaccessible; I can see some
aspects of the state of the world, but I don't know what's happening outside
this room or inside your room. So, our world is not accessible, but some
kinds of toy worlds are accessible and maybe some kinds of applications.
Imagine I am thinking of where to route all the airplanes for United Airlines. I
like to think that they know where all the airplanes are all the time, so maybe
that's an accessible domain.

38

•

•

Lecture 1 • 38

Classes of Environments

Accessible (vs. Inaccessible)
• Can you see the state of the world directly?

Deterministic (vs. Non-Deterministic)
• Does an action map one state into a single other state?

Another dimension is "deterministic" versus "non-deterministic". Earlier I
talked about world dynamics, the mapping between a current state of the
world and the action that an agent takes, into another state of the world. In
some domains that's usefully thought of as being deterministic. The only
domains that are really deterministic are artificial ones, like games. Even
clicking on a link and going to a Web page, you know that doesn't always
work. Most things are not entirely deterministic, but some are reasonably
well-modeled as being deterministic. In the first half of this course, we'll
think about deterministic models of the environment, really as an abstraction,
and in the second half we'll think about probabilistic models.

39

•

•

•

Lecture 1 • 39

Classes of Environments

Accessible (vs. Inaccessible)
• Can you see the state of the world directly?

Deterministic (vs. Non-Deterministic)
• Does an action map one state into a single other state?

Static (vs. Dynamic)
• Can the world change while you are thinking?

Another dimension for describing environments is static versus dynamic.
Again, one can argue that everything is dynamic but let's talk about it. It has
to do with whether the world can change while you're thinking. If the world
can't change while you're thinking, then the whole limited rationality thing
does not matter as much, because you can think and think until you come up
with the best possible thing to do. But, usually the world is changing. If you
compute the optimal trajectory for avoiding the truck but you're a little late,
it's no good. You have to really worry about the dynamic property of the
environment.

40

•

•

•

•

Lecture 1 • 40

Classes of Environments

Accessible (vs. Inaccessible)
• Can you see the state of the world directly?

Deterministic (vs. Non-Deterministic)
• Does an action map one state into a single other state?

Static (vs. Dynamic)
• Can the world change while you are thinking?

Discrete (vs. Continuous)
• Are the percepts and actions discrete (like integers) or

continuous (like reals)?

And then there's "discrete" versus "continuous". This is not really an intrinsic
property of the environment, but more a property of how we choose to model
the environment. So, you can think of your perceptions of the world or your
actions as being discrete or continuous.

41

gammon
(http://www.bkgm.com/rules.html)

four narrow triangles called points. The

triangles each. The quadrants are

Lecture 1 • 41

Example: Back

Backgammon is a game for two players,
played on a board consisting of twenty-

triangles alternate in color and are
grouped into four quadrants of six

referred to as a player's home board
and outer board, and the opponent's
home board and outer board. The home
and outer boards are separated from
each other by a ridge down the center
of the board called the bar.

The points are numbered for either player starting in that player's home
board. The outermost point is the twenty-four point, which is also the
opponent's one point. Each player has fifteen stones of his own color.
The initial arrangement of stones is: two on each player's twenty-four
point, five on each player's thirteen point, three on each player's eight
point, and five on each player's six point.

Both players have their own pair of dice and a dice cup used for
shaking. A doubling cube, with the numerals 2, 4, 8, 16, 32, and 64 on
its faces, is used to keep track of the current stake of the game.

Courtesy of Tom Keith. Used with permission.
http://www.bkgm.com/

Let's talk about some environments. What about playing backgammon?
Here’s a very brief introduction to backgammon for those of you who are
unfamiliar with the game.

http://www.bkgm.com

42

•

–
–
–

Lecture 1 • 42

Backgammon-Playing Agent

Action space – A
• The backgammon moves

Motor voltages of the robot arm moving the stones?
Change the (x,y) location of stones?
Change which point a stone is on? [“Logical” actions]

For an agent playing backgammon, what's the action space? The action
space is the set of backgammon moves, such as putting a piece on point
number 7. It’s easiest to think of the moves in some fairly logical way. You
probably don't want to think of the move as the x-y location of the stone on
the board. You could. But, that doesn't seem so useful. If you were building
the robot to move the pieces, you would have to think of the x-y location; you
would have to think of the motor voltages that you send to the joints in order
for the arm to move where it needs to go in order to put the stone where it
goes on the point on the board.

43

•

–
–
–

•

–
–
–

Lecture 1 • 43

Backgammon-Playing Agent

Action space – A
• The backgammon moves

Motor voltages of the robot arm moving the stones?
Change the (x,y) location of stones?
Change which point a stone is on? [“Logical” actions]

Percepts – P
• The state of the board

Images of the board?
(x,y) locations of the stones?
Listing of stones on each point? [“Logical” percepts]

Similarly, there are a variety of descriptions of the percepts. Your percepts
might be images of the backgammon board, they might be x-y locations of
the stones, they might be the facial expression of your oponent or they might
be a logical description of where the stones are. For any one of those levels
of description of the environment and of the problem you're supposed to
solve, you'd write the software differently.
Let's take for now the very abstracted view of playing backgammon, the view
that backgammon books take. Which is, the moves are putting the stones
on points, and the percepts are where (again at a logical level) the stones
are.

44

Backgammon Environment

•

Lecture 1 • 44

Accessible?
• Yes!

Backgammon is one of those few domains that is accessible; you can see
everything there is to know about the state of a backgammon board.

45

Backgammon Environment

•

•

opponent

Lecture 1 • 45

Accessible?
• Yes!

Deterministic?
• No! Two sources of non-determinism: the dice and the

Is it deterministic? No. There are two issues about backgammon that make
it nondeterministic. One is the dice. The other is your opponent. Actually,
games are an interesting special case of the model we’ve been exploring.
There is a nice chapter in the book on games; but we're not going to cover it,
just because there’s too much material to cover it all. Certainly, there is no
way to predict what your opponent will do. In game theory, it is typical to
assume that your opponent is infinitely smart and predict what he's going to
do on that basis. But, there are problems with that. He might not be so
smart after all. So, instead, you could try to learn how your opponent
behaves, and generate optimal reactions to his apparent behavior. But then,
he could change his behavior suddenly and cause a lot of trouble!

46

Backgammon Environment

•

•

opponent

•

Lecture 1 • 46

Accessible?
• Yes!

Deterministic?
• No! Two sources of non-determinism: the dice and the

Static?
• Yes! (unless you have a time limit)

Is backgammon static or dynamic? Static unless you have a time limit.

47

Backgammon Environment

•

•

opponent

•

•

Lecture 1 • 47

Accessible?
• Yes!

Deterministic?
• No! Two sources of non-determinism: the dice and the

Static?
• Yes! (unless you have a time limit)

Discrete?
• Yes! (if using logical actions and percepts)
• No! (e.g. if using (x,y) positions for actions and percepts)
• Images are discrete but so big and finely sampled that

they are usefully thought of as continuous.

Is it discrete or continuous? Depends on how you choose to model the
percepts and the actions. Logical moves and actions are discrete; x-y
coordinates and motor voltages are continuous; images are discrete, but it is
sometimes useful to treat them partially as continuous.

48

Lecture 1 • 48

Example: Driving a Taxi

Recitation Exercise: Think about how you would choose –

• Action space – A?

• Percept space – P?

• Environment – E?

As an exercise for our next recitation, think about how you might model the
problem of designing an automatic taxi driver. What would be an
appropriate way to describe the action and percept spaces? What kinds of
specifications might you be able to make of the environment? Is it
accessible? Discrete? Static? Deterministic?

49

Structures of Agents

•

p a

Lecture 1 • 49

Reflex (“reactive”) agent
• No memory

Let me go through a couple of structures of agents. We talked about a
table-based agent. We'll talk a bit more about what the book calls a simple
reflex agent (sometimes called a "reactive" agent). There’s a huge amount
of literature on things called reactive - reactive robots, reactive planning, and
it's gotten to the point that this word means so many things to so many
people that it does not mean anything. The most coherent interpretation is
that the agent gets percepts in and it generates actions and it only ever
maps a single percept to an action and so it has no memory. So, reactive
agents have no memory. Remember that we've said that, in general, an
agent maps strings of percepts into actions, allowing it to integrate
information over time.

50

Structures of Agents

•

•

–
–

p a

Lecture 1 • 50

Reflex (“reactive”) agent
• No memory

What can you solve this way?
• Accessible environments

Backgammon
Navigating down a hallway

There are some problems that you can solve with pure reflex agents. You
can solve backgammon in this way; maybe you can even solve the problem
of driving down the hallway and not running into the wall this way. You look
and you see that wall too close and you move away from it, etc. So, there
are a some things you can do reactively. Clearly if the world is accessible
(you can see everything there is to see in one shot) this means that you
don't need any memory; you can just react based on your current percepts.
For example, consider the amount of gasoline in your car. There are (at
least) two ways of knowing how much gas you have: one is to remember
how much driving you've done since you filled the tank, and the other is to
look at the gas gauge. If you have a gas gauge, then the state of the tank is
accessible to you and you don't need to remember how long you've been
driving.
Accessible and predictable are not the same. You can read the gas gauge
but have no idea an hour from now what the gauge will say. In that case, we
would still say that the environment is accessible.

51

Structures of Agents

•

p a

Lecture 1 • 51

Agent with memory

State
Estim
ator

Policy

Mental
state

Here's an agent with memory. Everybody who has taken theory of
computation is familiar with this picture. You can take any finite state
machine and decompose it like this.

52

Structures of Agents

•

•

percepts

p a

Lecture 1 • 52

Agent with memory

State estimator/Memory
• What we’ve chosen to remember from the history of

• Maps what you knew before, what you just perceived and
what you just did, into what you know now.

State
Estim
ator

Policy

Mental
state

It is divided into two components. The first part, often called the state
estimator, has the job of synthesizing the agent’s memory about the history
of its percepts and actions. One way to think about its memory is that it is
some kind of an estimate of the true hidden state of the environment. The
state estimator takes as input the old state estimate, the last action, and the
current perception, and generates as output a new estimate of the state of
the world.

53

Structures of Agents

•

•

percepts

p a

Lecture 1 • 53

Agent with memory

State estimator/Memory
• What we’ve chosen to remember from the history of

• Maps what you knew before, what you just perceived and
what you just did, into what you know now.

• Problem of behavior: Given my mental state, what action
should I take?

State
Estim
ator

Policy

Mental
state

The second component is called the policy. You can think of it as a reflex
agent, but rather than taking raw percepts from the world as input, it takes
the agent’s memory as input. Then it must select the best action it can
based on the current state of the agent’s memory.

54

Planning Agent Policy

Lecture 1 • 54

Planning is explicitly considering future consequences of actions in
order to choose the best one.

Let's talk about planning for a minute. Consider the problem of deciding
whether you should stop for gas, given that you’re in front of a particular gas
station.
Assuming that you have an accurate gas gauge, does this problem require
memory? No. Your choice of actions depend not just on what's going on
right now but what's going to happen in the future. Whether you stop now or
not depends on what future events (like running out of gas, or running out of
money) might be caused by your choice of action now.
Let's look at what I would call a planning agent. Either it is in a completely
accessible world or there is still, off-screen, a state estimator. We are
looking at the policy component of the agent, which must, as before, map
the available information into actions. But rather than having the policy
stored as a simple lookup table or a compact piece of code, it involves a
search.

55

Planning Agent Policy

s a
U
U
U

U

U

Ua1

a2

a3

a3 as

ai

s1

s2

s3

Lecture 1 • 55

current
state

that leads
to max U

Planning is explicitly considering future consequences of actions in
order to choose the best one.

We take the state from the state estimator and imagine "what will happen if
we take action1; what if we take action2”. Then, after we take action1, what
if we take action2, etc. I just had a flat tire, what if I call AAA - then wait 6
hours. What if I fix it myself, probably get fixed in 1/2 hour but I'd get covered
in mud. So, there are different consequence that result from different ways
of doing things. And, how do you evaluate these consequences? With U;
you take your utility function and apply it to the predicted results of your
actions.
So, planning is the process of generating possible sequences of actions,
simulating their consequences, picking which is the best and committing to
one of these actions. You pick the immediate action that's on the path that
looks best. This computation isn’t all that special; it's just a particular way to
organize a computation for choosing an action to take next. It’s particularly
appropriate when there are a lot of different possible states you could find
yourself in, too many to plan for in advance, and when you are not under so
much time pressure that you must have an immediate reaction.

56

Planning Agent Policy

s a
U
U
U

U

U

Ua1

a2

a3

a3 as

ai

s1

s2

s3

Lecture 1 • 56

• “Let your hypotheses die in your stead.” – Karl Popper

current
state

that leads
to max U

Planning is explicitly considering future consequences of actions in
order to choose the best one.

Karl Popper was a philosopher of science who thought about falsification of
theories. He said that an advantage of being human (I would say of being a
planning agent) is that you can let your hypotheses die in your stead. Rather
than jumping off the cliff, you can think about what it would be like and
decide not to do it.

