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ISA to Microarchitecture Mapping


•	 An ISA often designed for a particular 

microarchitectural style, e.g.,


– CISC  ⇒ microcoded


– RISC  ⇒ hardwired, pipelined


– VLIW  ⇒ fixed latency in-order pipelines


– JVM  ⇒ software interpretation


•	 But an ISA can be implemented in any 

microarchitectural style


– Pentium-4: hardwired pipelined CISC (x86) machine (with 
some microcode support) 

– This lecture: a microcoded RISC (MIPS) machine 
– Intel will probably eventually have a dynamically scheduled 

out-of-order VLIW (IA-64) processor 
– PicoJava: A hardware JVM processor 
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Microarchitecture: Implementation of an ISA


Controller 

Data 
path 

control 
pointsstatus 

lines 

Structure: How components are connected. 
Static 

Behavior: How data moves between components 
Dynamic 
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Microcontrol Unit Maurice Wilkes, 1954 

Embed the control logic state table in a memory array

op conditional

code flip-flop


Matrix A Matrix B 

Decoder 

Next state 

µ address 

toControl lines  
ALU, MUXs, Registers 
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Microcoded Microarchitecture


Memory 
(RAM) 

Datapath 

µcontroller 
(ROM) 

AddrData 

zero? 
busy? 

opcode 

enMem 
MemWrt 

holds fixed 
microcode instructions 

holds user program 
written in macrocode 

instructions (e.g., 
MIPS, x86, etc.) 
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The MIPS32 ISA


• Processor State

32 32-bit GPRs, R0 always contains a 0 
16 double-precision/32 single-precision FPRs 
FP status register, used for FP compares & exceptions 
PC, the program counter 
some other special registers See H&P p129

137 & Appendix 
• Data types	 C (online) for full 

8-bit byte, 16-bit half word description 
32-bit word for integers 
32-bit word for single precision floating point

64-bit word for double precision floating point


• Load/Store style instruction set

data addressing modes- immediate & indexed 
branch addressing modes- PC relative & register indirect 
Byte addressable memory- big-endian mode 

All instructions are 32 bits 
September 21, 2005 
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MIPS Instruction Formats 

6 5 5  5 5 6 
0 rs rt rd  0 func 

opcode rs rt immediate 

rd ← (rs) func (rt) ALU 
rt ← (rs) op immediateALUi 

6 5 5 16 
Mem     M[(rs) + displacement] 

6 5 5 16 

6 5 5  16 

6 26 

opcode rs rt displacement 

opcode rs offset BEQZ, BNEZ 

opcode rs JR, JALR 

opcode offset J, JAL 

September 21, 2005 



Microinstruction: register to register transfer (17 control signals) 

Bus 

A B 

OpSel ldA ldB 

ALU 

enALU 

ALU 
control 

2 

rs 
rt 
rd 

ExtSel 

IR 

ldIR 

Imm 
Ext 

enImm 

2 
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A Bus-based Datapath for MIPS


MA

addr

data

Memory

Opcode zero? Busy?


ldMA


MemWrt 

enMem 

32 

RegWrt 

enReg 

addr 

data 

rs 
rt 
rd 
32(PC)
31(Link) 

RegSel 

32 GPRs 

32-bit Reg 

3 

+ PC ... 

MA ← PC means RegSel = PC;  enReg=yes; ldMA= yes 
B ← Reg[rt] means RegSel = rt;  enReg=yes; ldB = yes 
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Memory Module


Enable 

Write(1)/Read(0)RAM 

din 

we 

addr busy 

bus 

dout 

Assumption: Memory operates asynchronously 
and is slow as compared to Reg-to-Reg transfers 
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Instruction Execution 

Execution of a MIPS instruction involves


1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

+ the computation of the 
next instruction address 

September 21, 2005 
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Microprogram Fragments


instr fetch: 	 MA ← PC 
A ← PC can be 

treated asIR ← Memory 
a macroPC ← A + 4 

dispatch on OPcode 

ALU: 	 A ← Reg[rs]
B ← Reg[rt] 
Reg[rd] ← func(A,B) 
do instruction fetch 

ALUi: 	 A ← Reg[rs]
B ← Imm sign extension ...
Reg[rt] ← Opcode(A,B) 
do instruction fetch 

September 21, 2005 
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Microprogram Fragments (cont.)


LW: 	 A ← Reg[rs]

B ← Imm

MA ← A + B

Reg[rt] ← Memory

do instruction fetch 


J: 	 A ← PC JumpTarg(A,B) = 
{A[31:28],B[25:0],00}

B ← IR

PC ← JumpTarg(A,B)

do instruction fetch 


beqz:	 A ← Reg[rs] 
If zero?(A) then go to bz-taken 
do instruction fetch 

bz-taken:	 A ← PC

B ← Imm << 2

PC ← A + B

do instruction fetch 
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MIPS Microcontroller: first attempt 

next 
state 

µPC (state) 

Opcode 
zero? 

Busy (memory) 

s 

s 

6 

µProgram ROM 

addr 

data 

latching the inputs 
may cause a 
one-cycle delay 

= 2(opcode+status+s) words 

How big 
is “s”? 

ROM size ? 

Word size ? 
= control+s bits 

Control Signals (17) 
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Microprogram in the ROM worksheet 

State Op zero? busy Control points next-state 

fetch0 * * * MA ← PC fetch1 

fetch1 * * yes .... fetch1 
fetch1 *  *  no IR  ← Memory fetch2 
fetch2 * * * A ← PC fetch3 
fetch3 *  *  * PC  ← A + 4 ? 

fetch3 ALU * * PC ← A + 4 ALU0 

ALU0 * * *  A ← Reg[rs] ALU1 
ALU1 * * *  B ← Reg[rt] ALU2 
ALU2 *  *  * Reg[rd]  ← func(A,B) fetch0 
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Microprogram in the ROM

State Op zero? busy Control points next-state 

fetch0 * * * MA ← PC fetch1 
fetch1 * * yes .... fetch1 
fetch1 * * ← Memory fetch2 
fetch2 * * * A ← PC fetch3 
fetch3 ALU * * PC ← A + 4 ALU0 
fetch3 ALUi * * PC ← A + 4 ALUi0 
fetch3 LW * * PC ← A + 4 LW0 
fetch3 SW * * PC ← A + 4 SW0 
fetch3 J * * ← A + 4 J0 
fetch3 JAL * * PC ← A + 4 JAL0 
fetch3 JR * * PC ← A + 4 JR0 
fetch3 JALR * * PC ← A + 4 JALR0 
fetch3 beqz * * PC ← A + 4 beqz0 
... 
ALU0 * * *  A ← Reg[rs] ALU1 
ALU1 * * *  B ← Reg[rt] ALU2 
ALU2 * * * ← 0 

September 21, 2005 
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Microprogram in the ROM Cont.


State Op zero? busy Control points next-state 

ALUi0 * * *  A ← Reg[rs] ALUi1 
ALUi1 sExt * * B ← sExt16(Imm) ALUi2 
ALUi1 uExt * * B ← uExt16(Imm) ALUi2 
ALUi2 * * * ← Op(A,B) 0 
... 
J0 * * * A ← PC J1 
J1 * * * B ← IR J2 
J2 * * * ← 0 
... 
beqz0 * * *  A ← Reg[rs] 1 
beqz1 * * A ← PC beqz2 
beqz1 * * .... fetch0 
beqz2 * * * B ← sExt16(Imm) beqz3 
beqz3 * * * ← A+B 0 
... 

JumpTarg(A,B) = {A[31:28],B[25:0],00} 
September 21, 2005 

 Reg[rd] fetch

PC  JumpTarg(A,B) fetch

beqz
yes  
no 

PC  fetch
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Size of Control Store


size = 2(w+s) x (c + s) 

data 

status & opcode 

addr 

next µPC 

Control signals 

µPC 
/ 
w 

/ s 

/ c 

Control ROM 

MIPS: w = 6+2 c = 17 s = ? 
no. of steps per opcode = 4 to 6 + fetch-sequence 
no. of states ≈ (4 steps per op-group ) x op-groups 

+ common sequences
= 4 x 8 + 10 states = 42 states ⇒ s = 6 

Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes 
September 21, 2005 
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Reducing Control Store Size 

Control store has to be fast ⇒ expensive 

• Reduce the ROM height (= address bits) 
– reduce inputs by extra external logic 

each input bit doubles the size of the 
control store 

– reduce states by grouping opcodes 
find common sequences of actions 

– condense input status bits 
combine all exceptions into one, i.e., 
exception/no-exception 

• Reduce the ROM width

– restrict the next-state encoding 

Next, Dispatch on opcode, Wait for memory, ... 
– encode control signals (vertical microcode) 

September 21, 2005 
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MIPS Controller V2


µ
next | spin 

| fetch | dispatch 
| feqz | fnez 

Control ROM 

address 

data 

+1 

Opcode ext 

µPC (state) 

jump 
logic 

zero 

µPC µPC+1 

absolute (start of a predetermined sequence) 

op-group 

busy 

µPCSrc
input encoding 

reduces ROM height 

next-state encoding 
reduces ROM width 

September 21, 2005 
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Jump Logic


µPCSrc = Case µJumpTypes 

next ⇒ µPC+1 

spin ⇒ if (busy) then µPC else µPC+1 

fetch ⇒ absolute 

dispatch ⇒ op-group 

feqz ⇒ if (zero) then absolute else µPC+1 

fnez ⇒ if (zero) then µPC+1 else absolute 

September 21, 2005 
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Instruction Fetch & ALU:MIPS-Controller-2


State Control points next-state 

fetch0 MA ← PC next 
fetch1 IR ← Memory spin 
fetch2 A ← PC next 
fetch3 PC ← A + 4 dispatch 
... 
ALU0 A ← Reg[rs] next 
ALU1 B ← Reg[rt] next 
ALU2 Reg[rd]←func(A,B) fetch 

ALUi0 A ← Reg[rs] next 
ALUi1 B ← sExt16(Imm) next 
ALUi2 Reg[rd]← Op(A,B) fetch 
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Load & Store: MIPS-Controller-2 

State Control points next-state 

LW0 A ← Reg[rs] next 
LW1 B ← sExt16(Imm) next 
LW2 MA ← A+B next 
LW3 Reg[rt] ← Memory spin 
LW4 fetch 

SW0 A ← Reg[rs] next 
SW1 B ← sExt16(Imm) next 
SW2 MA ← A+B next 
SW3 Memory ← Reg[rt] spin 
SW4 fetch 

September 21, 2005 
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Branches: MIPS-Controller-2 

State Control points next-state 

BEQZ0 A ← Reg[rs] next 
BEQZ1 fnez 
BEQZ2 A ← PC next 
BEQZ3 B ← sExt16(Imm<<2) next 
BEQZ4 PC ← A+B fetch 

BNEZ0 A ← Reg[rs] next 
BNEZ1 feqz 
BNEZ2 A ← PC next 
BNEZ3 B ← sExt16(Imm<<2) next 
BNEZ4 PC ← A+B fetch 

September 21, 2005 
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Jumps: MIPS-Controller-2 

State Control points next-state 

J0 A ← PC next 
J1 B ← IR next 
J2 PC ← JumpTarg(A,B) fetch 

JR0 A ← Reg[rs] next 
JR1 PC ← A  fetch  

JAL0 A ← PC next 
JAL1 Reg[31] ← A  next  
JAL2 B ← IR next 
JAL3 PC ← JumpTarg(A,B) fetch 

JALR0 A ← PC next 
JALR1 B ← Reg[rs] next 
JALR2 Reg[31] ← A  next  
JALR3 PC ← B  fetch  
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Instructions

Opcode zero? Busy? 

ldIR OpSel ldA ldB 32(PC) ldMA
31(Link)
rd 
rt2 rs 

RegSel MA 
3rd 

rt A B addr addrIR rs 
32 GPRs 

ExtSel + PC ... Memory MemWrtImm ALU RegWrt
Ext control ALU 32-bit Reg enReg 

data data enMemenImm enALU 

Bus 32 

rd ← M[(rs)] op (rt)

M[(rd)] ← (rs) op (rt)

M[(rd)] ← M[(rs)] op M[(rt)]


Reg-Memory-src ALU op 
Reg-Memory-dst ALU op 
Mem-Mem ALU op 

September 21, 2005 
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MIPS-Controller-2 

Mem-Mem ALU op M[(rd)] ← M[(rs)] op M[(rt)] 

ALUMM0 MA ← Reg[rs] next 
ALUMM1 A ← Memory spin 
ALUMM2 MA ← Reg[rt] next 
ALUMM3 B ← Memory spin 
ALUMM4 MA ←Reg[rd] next 
ALUMM5 Memory ← func(A,B) spin

ALUMM6 fetch


Complex instructions usually do not require datapath 
modifications in a microprogrammed implementation 

-- only extra space for the control program 

Implementing these instructions using a hardwired 
controller is difficult without datapath modifications 

September 21, 2005 
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Performance Issues 
Microprogrammed control 

⇒ multiple cycles per instruction 

Cycle time ? 
tC > max(treg-reg, tALU, tµROM, tRAM) 

Given complex control, tALU & tRAM can be broken 
into multiple cycles. However, tµROM cannot be 
broken down. Hence 

tC > max(treg-reg, tµROM) 

Suppose 10 * tµROM < tRAM 
Good performance, relative to the single-cycle 
hardwired implementation, can be achieved 
even with a CPI of 10 

September 21, 2005 
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Horizontal vs Vertical µCode 
Bits per µInstruction 

# µInstructions 

• Horizontal µcode has wider µinstructions 
– Multiple parallel operations per µinstruction 
– Fewer steps per macroinstruction 
– Sparser encoding ⇒ more bits 

• Vertical  µcode has narrower µinstructions

–	 Typically a single datapath operation per µinstruction 

– separate  µinstruction for branches 
– More steps to per macroinstruction


– More compact  ⇒ less bits


• Nanocoding 
– Tries to combine best of horizontal and vertical µcode 

September 21, 2005 
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Nanocoding


Exploits recurring 

control signal patterns 

in µcode, e.g., 


ALU0 A ← Reg[rs] 

...

ALUi0 A ← Reg[rs]

...


µ

nanoaddress 

µcode 
next-state 

µaddress 

µPC (state) 

data 

code ROM 

nanoinstruction ROM 

•	 MC68000 had 17-bit µcode containing either 10-bit µjump or 9
bit nanoinstruction pointer 
– Nanoinstructions were 68 bits wide, decoded to give 196 

control signals 

September 21, 2005 
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Some more history … 

• IBM 360 

• Microcoding through the seventies 

• Microcoding now 

September 21, 2005 
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Microprogramming in IBM 360 

M30 M40 M50 M65 

Datapath 
width (bits) 

8 16 32 64 

µinst width 
(bits) 

50 52 85 87 

µcode size 
(K minsts) 

4 4 2.75 2.75 

µstore 
technology 

CCROS TCROS BCROS BCROS 

µstore cycle 
(ns) 

750 625 500 200 

memory 
cycle (ns) 

1500 2500 2000 750 

Rental fee 
($K/month) 

4 7 15 35 

Only the fastest models (75 and 95) were hardwired 
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Microcode Emulation


•	 IBM initially miscalculated the importance of 
software compatibility with earlier models 
when introducing the 360 series 

•	 Honeywell stole some IBM 1401 customers by 
offering translation software (“Liberator”) for 
Honeywell H200 series machine 

•	 IBM retaliated with optional additional 
microcode for 360 series that could emulate 
IBM 1401 ISA, later extended for IBM 7000 
series 
–	 one popular program on 1401 was a 650 simulator, so 

some customers ran many 650 programs on emulated 
1401s 

– (650 simulated on 1401 emulated on 360) 

September 21, 2005 
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Arvind 

Seventies 
•	 Significantly faster ROMs than DRAMs were 

available 

•	 For complex instruction sets, datapath and 
controller were cheaper and simpler 

•	 New instructions , e.g., floating point, could 
be supported without datapath modifications 

•	 Fixing bugs in the controller was easier


• ISA compatibility across various models 

could be achieved easily and cheaply


Except for the cheapest and fastest machines, 
all computers were microprogrammed 

September 21, 2005 
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Writable Control Store (WCS) 
•	 Implement control store with SRAM not ROM 

–	 MOS SRAM memories now almost as fast as control store 
(core memories/DRAMs were 2-10x slower) 

–	 Bug-free microprograms difficult to write 

•	 User-WCS provided as option on several 
minicomputers 
– Allowed users to change microcode for each process 

• User-WCS  failed 
–	 Little or no programming tools support 
–	 Difficult to fit software into small space 
–	 Microcode control tailored to original ISA, less useful for 

others 
–	 Large WCS part of processor state - expensive context 

switches 
–	 Protection difficult if user can change microcode 
–	 Virtual memory required restartable microcode 

September 21, 2005 
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Microprogramming: late seventies


•	 With the advent of VLSI technology 
assumptions about ROM & RAM speed 
became invalid 

• Micromachines became more complicated

•	 Micromachines were pipelined to overcome slower 

ROM 
•	 Complex instruction sets led to the need for 

subroutine and call stacks in µcode 
•	 Need for fixing bugs in control programs was in 

conflict with read-only nature of µROM 
⇒	WCS (B1700, QMachine, Intel432, …) 

•	 Introduction of caches and buffers, especially 
for instructions, made multiple-cycle 
execution of reg-reg instructions unattractive 
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Modern Usage 
• Microprogramming is far from extinct 

• Played a crucial role in micros of the Eighties

Motorola 68K series

Intel 386 and 486


• Microcode pays an assisting role in most modern

CISC micros (AMD Athlon, Intel Pentium-4 ...)

• Most instructions are executed directly, i.e., with hard-wired 

control 
• Infrequently-used and/or complicated instructions invoke the 

microcode engine 

• Patchable microcode common for post-fabrication 
bug fixes, e.g. Intel Pentiums load µcode patches 
at bootup 
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