
1 

Microprogramming


Arvind

Computer Science & Artificial Intelligence Lab 


M.I.T.


Based on the material prepared by

Arvind and Krste Asanovic




6.823 L4- 2 
Arvind 

ISA to Microarchitecture Mapping


•	 An ISA often designed for a particular 

microarchitectural style, e.g.,


– CISC  ⇒ microcoded


– RISC  ⇒ hardwired, pipelined


– VLIW  ⇒ fixed latency in-order pipelines


– JVM  ⇒ software interpretation


•	 But an ISA can be implemented in any 

microarchitectural style


– Pentium-4: hardwired pipelined CISC (x86) machine (with 
some microcode support) 

– This lecture: a microcoded RISC (MIPS) machine 
– Intel will probably eventually have a dynamically scheduled 

out-of-order VLIW (IA-64) processor 
– PicoJava: A hardware JVM processor 

September 21, 2005 



6.823 L4- 3 
Arvind 

Microarchitecture: Implementation of an ISA


Controller 

Data 
path 

control 
pointsstatus 

lines 

Structure: How components are connected. 
Static 

Behavior: How data moves between components 
Dynamic 

September 21, 2005 



6.823 L4- 4 
Arvind 

Microcontrol Unit Maurice Wilkes, 1954 

Embed the control logic state table in a memory array

op conditional

code flip-flop


Matrix A Matrix B 

Decoder 

Next state 

µ address 

toControl lines  
ALU, MUXs, Registers 

September 21, 2005 



6.823 L4- 5 
Arvind 

Microcoded Microarchitecture


Memory 
(RAM) 

Datapath 

µcontroller 
(ROM) 

AddrData 

zero? 
busy? 

opcode 

enMem 
MemWrt 

holds fixed 
microcode instructions 

holds user program 
written in macrocode 

instructions (e.g., 
MIPS, x86, etc.) 

September 21, 2005 



6.823 L4- 6 
Arvind 

The MIPS32 ISA


• Processor State

32 32-bit GPRs, R0 always contains a 0 
16 double-precision/32 single-precision FPRs 
FP status register, used for FP compares & exceptions 
PC, the program counter 
some other special registers See H&P p129

137 & Appendix 
• Data types	 C (online) for full 

8-bit byte, 16-bit half word description 
32-bit word for integers 
32-bit word for single precision floating point

64-bit word for double precision floating point


• Load/Store style instruction set

data addressing modes- immediate & indexed 
branch addressing modes- PC relative & register indirect 
Byte addressable memory- big-endian mode 

All instructions are 32 bits 
September 21, 2005 



6.823 L4- 7 
Arvind 

MIPS Instruction Formats 

6 5 5  5 5 6 
0 rs rt rd  0 func 

opcode rs rt immediate 

rd ← (rs) func (rt) ALU 
rt ← (rs) op immediateALUi 

6 5 5 16 
Mem     M[(rs) + displacement] 

6 5 5 16 

6 5 5  16 

6 26 

opcode rs rt displacement 

opcode rs offset BEQZ, BNEZ 

opcode rs JR, JALR 

opcode offset J, JAL 

September 21, 2005 



Microinstruction: register to register transfer (17 control signals) 

Bus 

A B 

OpSel ldA ldB 

ALU 

enALU 

ALU 
control 

2 

rs 
rt 
rd 

ExtSel 

IR 

ldIR 

Imm 
Ext 

enImm 

2 

6.823 L4- 8 
Arvind 

A Bus-based Datapath for MIPS


MA

addr

data

Memory

Opcode zero? Busy?


ldMA


MemWrt 

enMem 

32 

RegWrt 

enReg 

addr 

data 

rs 
rt 
rd 
32(PC)
31(Link) 

RegSel 

32 GPRs 

32-bit Reg 

3 

+ PC ... 

MA ← PC means RegSel = PC;  enReg=yes; ldMA= yes 
B ← Reg[rt] means RegSel = rt;  enReg=yes; ldB = yes 

September 21, 2005 



6.823 L4- 9 
Arvind 

Memory Module


Enable 

Write(1)/Read(0)RAM 

din 

we 

addr busy 

bus 

dout 

Assumption: Memory operates asynchronously 
and is slow as compared to Reg-to-Reg transfers 

September 21, 2005 



6.823 L4- 10 
Arvind 

Instruction Execution 

Execution of a MIPS instruction involves


1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

+ the computation of the 
next instruction address 

September 21, 2005 



6.823 L4- 11 
Arvind 

Microprogram Fragments


instr fetch: 	 MA ← PC 
A ← PC can be 

treated asIR ← Memory 
a macroPC ← A + 4 

dispatch on OPcode 

ALU: 	 A ← Reg[rs]
B ← Reg[rt] 
Reg[rd] ← func(A,B) 
do instruction fetch 

ALUi: 	 A ← Reg[rs]
B ← Imm sign extension ...
Reg[rt] ← Opcode(A,B) 
do instruction fetch 

September 21, 2005 



6.823 L4- 12 
Arvind 

Microprogram Fragments (cont.)


LW: 	 A ← Reg[rs]

B ← Imm

MA ← A + B

Reg[rt] ← Memory

do instruction fetch 


J: 	 A ← PC JumpTarg(A,B) = 
{A[31:28],B[25:0],00}

B ← IR

PC ← JumpTarg(A,B)

do instruction fetch 


beqz:	 A ← Reg[rs] 
If zero?(A) then go to bz-taken 
do instruction fetch 

bz-taken:	 A ← PC

B ← Imm << 2

PC ← A + B

do instruction fetch 


September 21, 2005 



6.823 L4- 13 
Arvind 

MIPS Microcontroller: first attempt 

next 
state 

µPC (state) 

Opcode 
zero? 

Busy (memory) 

s 

s 

6 

µProgram ROM 

addr 

data 

latching the inputs 
may cause a 
one-cycle delay 

= 2(opcode+status+s) words 

How big 
is “s”? 

ROM size ? 

Word size ? 
= control+s bits 

Control Signals (17) 

September 21, 2005 



6.823 L4- 14 
Arvind 

Microprogram in the ROM worksheet 

State Op zero? busy Control points next-state 

fetch0 * * * MA ← PC fetch1 

fetch1 * * yes .... fetch1 
fetch1 *  *  no IR  ← Memory fetch2 
fetch2 * * * A ← PC fetch3 
fetch3 *  *  * PC  ← A + 4 ? 

fetch3 ALU * * PC ← A + 4 ALU0 

ALU0 * * *  A ← Reg[rs] ALU1 
ALU1 * * *  B ← Reg[rt] ALU2 
ALU2 *  *  * Reg[rd]  ← func(A,B) fetch0 

September 21, 2005 



6.823 L4- 15 
Arvind 

Microprogram in the ROM

State Op zero? busy Control points next-state 

fetch0 * * * MA ← PC fetch1 
fetch1 * * yes .... fetch1 
fetch1 * * ← Memory fetch2 
fetch2 * * * A ← PC fetch3 
fetch3 ALU * * PC ← A + 4 ALU0 
fetch3 ALUi * * PC ← A + 4 ALUi0 
fetch3 LW * * PC ← A + 4 LW0 
fetch3 SW * * PC ← A + 4 SW0 
fetch3 J * * ← A + 4 J0 
fetch3 JAL * * PC ← A + 4 JAL0 
fetch3 JR * * PC ← A + 4 JR0 
fetch3 JALR * * PC ← A + 4 JALR0 
fetch3 beqz * * PC ← A + 4 beqz0 
... 
ALU0 * * *  A ← Reg[rs] ALU1 
ALU1 * * *  B ← Reg[rt] ALU2 
ALU2 * * * ← 0 

September 21, 2005 

no IR  

 PC  

 Reg[rd]  func(A,B) fetch



6.823 L4- 16 
Arvind 

Microprogram in the ROM Cont.


State Op zero? busy Control points next-state 

ALUi0 * * *  A ← Reg[rs] ALUi1 
ALUi1 sExt * * B ← sExt16(Imm) ALUi2 
ALUi1 uExt * * B ← uExt16(Imm) ALUi2 
ALUi2 * * * ← Op(A,B) 0 
... 
J0 * * * A ← PC J1 
J1 * * * B ← IR J2 
J2 * * * ← 0 
... 
beqz0 * * *  A ← Reg[rs] 1 
beqz1 * * A ← PC beqz2 
beqz1 * * .... fetch0 
beqz2 * * * B ← sExt16(Imm) beqz3 
beqz3 * * * ← A+B 0 
... 

JumpTarg(A,B) = {A[31:28],B[25:0],00} 
September 21, 2005 

 Reg[rd] fetch

PC  JumpTarg(A,B) fetch

beqz
yes  
no 

PC  fetch



6.823 L4- 17 
Arvind 

Size of Control Store


size = 2(w+s) x (c + s) 

data 

status & opcode 

addr 

next µPC 

Control signals 

µPC 
/ 
w 

/ s 

/ c 

Control ROM 

MIPS: w = 6+2 c = 17 s = ? 
no. of steps per opcode = 4 to 6 + fetch-sequence 
no. of states ≈ (4 steps per op-group ) x op-groups 

+ common sequences
= 4 x 8 + 10 states = 42 states ⇒ s = 6 

Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes 
September 21, 2005 



6.823 L4- 18 
Arvind 

Reducing Control Store Size 

Control store has to be fast ⇒ expensive 

• Reduce the ROM height (= address bits) 
– reduce inputs by extra external logic 

each input bit doubles the size of the 
control store 

– reduce states by grouping opcodes 
find common sequences of actions 

– condense input status bits 
combine all exceptions into one, i.e., 
exception/no-exception 

• Reduce the ROM width

– restrict the next-state encoding 

Next, Dispatch on opcode, Wait for memory, ... 
– encode control signals (vertical microcode) 

September 21, 2005 



6.823 L4- 19 
Arvind 

MIPS Controller V2


µ
next | spin 

| fetch | dispatch 
| feqz | fnez 

Control ROM 

address 

data 

+1 

Opcode ext 

µPC (state) 

jump 
logic 

zero 

µPC µPC+1 

absolute (start of a predetermined sequence) 

op-group 

busy 

µPCSrc
input encoding 

reduces ROM height 

next-state encoding 
reduces ROM width 

September 21, 2005 

JumpType = 

Control Signals (17) 



6.823 L4- 20 
Arvind 

Jump Logic


µPCSrc = Case µJumpTypes 

next ⇒ µPC+1 

spin ⇒ if (busy) then µPC else µPC+1 

fetch ⇒ absolute 

dispatch ⇒ op-group 

feqz ⇒ if (zero) then absolute else µPC+1 

fnez ⇒ if (zero) then µPC+1 else absolute 

September 21, 2005 



6.823 L4- 21 
Arvind 

Instruction Fetch & ALU:MIPS-Controller-2


State Control points next-state 

fetch0 MA ← PC next 
fetch1 IR ← Memory spin 
fetch2 A ← PC next 
fetch3 PC ← A + 4 dispatch 
... 
ALU0 A ← Reg[rs] next 
ALU1 B ← Reg[rt] next 
ALU2 Reg[rd]←func(A,B) fetch 

ALUi0 A ← Reg[rs] next 
ALUi1 B ← sExt16(Imm) next 
ALUi2 Reg[rd]← Op(A,B) fetch 

September 21, 2005 



6.823 L4- 22 
Arvind 

Load & Store: MIPS-Controller-2 

State Control points next-state 

LW0 A ← Reg[rs] next 
LW1 B ← sExt16(Imm) next 
LW2 MA ← A+B next 
LW3 Reg[rt] ← Memory spin 
LW4 fetch 

SW0 A ← Reg[rs] next 
SW1 B ← sExt16(Imm) next 
SW2 MA ← A+B next 
SW3 Memory ← Reg[rt] spin 
SW4 fetch 

September 21, 2005 



6.823 L4- 23 
Arvind 

Branches: MIPS-Controller-2 

State Control points next-state 

BEQZ0 A ← Reg[rs] next 
BEQZ1 fnez 
BEQZ2 A ← PC next 
BEQZ3 B ← sExt16(Imm<<2) next 
BEQZ4 PC ← A+B fetch 

BNEZ0 A ← Reg[rs] next 
BNEZ1 feqz 
BNEZ2 A ← PC next 
BNEZ3 B ← sExt16(Imm<<2) next 
BNEZ4 PC ← A+B fetch 

September 21, 2005 



6.823 L4- 24 
Arvind 

Jumps: MIPS-Controller-2 

State Control points next-state 

J0 A ← PC next 
J1 B ← IR next 
J2 PC ← JumpTarg(A,B) fetch 

JR0 A ← Reg[rs] next 
JR1 PC ← A  fetch  

JAL0 A ← PC next 
JAL1 Reg[31] ← A  next  
JAL2 B ← IR next 
JAL3 PC ← JumpTarg(A,B) fetch 

JALR0 A ← PC next 
JALR1 B ← Reg[rs] next 
JALR2 Reg[31] ← A  next  
JALR3 PC ← B  fetch  

September 21, 2005 



25 

Five-minute break to stretch your legs




2 

6.823 L4- 26 
ArvindImplementing Complex


Instructions

Opcode zero? Busy? 

ldIR OpSel ldA ldB 32(PC) ldMA
31(Link)
rd 
rt2 rs 

RegSel MA 
3rd 

rt A B addr addrIR rs 
32 GPRs 

ExtSel + PC ... Memory MemWrtImm ALU RegWrt
Ext control ALU 32-bit Reg enReg 

data data enMemenImm enALU 

Bus 32 

rd ← M[(rs)] op (rt)

M[(rd)] ← (rs) op (rt)

M[(rd)] ← M[(rs)] op M[(rt)]


Reg-Memory-src ALU op 
Reg-Memory-dst ALU op 
Mem-Mem ALU op 

September 21, 2005 



6.823 L4- 27 
ArvindMem-Mem ALU Instructions: 

MIPS-Controller-2 

Mem-Mem ALU op M[(rd)] ← M[(rs)] op M[(rt)] 

ALUMM0 MA ← Reg[rs] next 
ALUMM1 A ← Memory spin 
ALUMM2 MA ← Reg[rt] next 
ALUMM3 B ← Memory spin 
ALUMM4 MA ←Reg[rd] next 
ALUMM5 Memory ← func(A,B) spin

ALUMM6 fetch


Complex instructions usually do not require datapath 
modifications in a microprogrammed implementation 

-- only extra space for the control program 

Implementing these instructions using a hardwired 
controller is difficult without datapath modifications 

September 21, 2005 



6.823 L4- 28 
Arvind 

Performance Issues 
Microprogrammed control 

⇒ multiple cycles per instruction 

Cycle time ? 
tC > max(treg-reg, tALU, tµROM, tRAM) 

Given complex control, tALU & tRAM can be broken 
into multiple cycles. However, tµROM cannot be 
broken down. Hence 

tC > max(treg-reg, tµROM) 

Suppose 10 * tµROM < tRAM 
Good performance, relative to the single-cycle 
hardwired implementation, can be achieved 
even with a CPI of 10 

September 21, 2005 



6.823 L4- 29 
Arvind 

Horizontal vs Vertical µCode 
Bits per µInstruction 

# µInstructions 

• Horizontal µcode has wider µinstructions 
– Multiple parallel operations per µinstruction 
– Fewer steps per macroinstruction 
– Sparser encoding ⇒ more bits 

• Vertical  µcode has narrower µinstructions

–	 Typically a single datapath operation per µinstruction 

– separate  µinstruction for branches 
– More steps to per macroinstruction


– More compact  ⇒ less bits


• Nanocoding 
– Tries to combine best of horizontal and vertical µcode 

September 21, 2005 



6.823 L4- 30 
Arvind 

Nanocoding


Exploits recurring 

control signal patterns 

in µcode, e.g., 


ALU0 A ← Reg[rs] 

...

ALUi0 A ← Reg[rs]

...


µ

nanoaddress 

µcode 
next-state 

µaddress 

µPC (state) 

data 

code ROM 

nanoinstruction ROM 

•	 MC68000 had 17-bit µcode containing either 10-bit µjump or 9
bit nanoinstruction pointer 
– Nanoinstructions were 68 bits wide, decoded to give 196 

control signals 

September 21, 2005 



6.823 L4- 31 
Arvind 

Some more history … 

• IBM 360 

• Microcoding through the seventies 

• Microcoding now 

September 21, 2005 



6.823 L4- 32 
Arvind 

Microprogramming in IBM 360 

M30 M40 M50 M65 

Datapath 
width (bits) 

8 16 32 64 

µinst width 
(bits) 

50 52 85 87 

µcode size 
(K minsts) 

4 4 2.75 2.75 

µstore 
technology 

CCROS TCROS BCROS BCROS 

µstore cycle 
(ns) 

750 625 500 200 

memory 
cycle (ns) 

1500 2500 2000 750 

Rental fee 
($K/month) 

4 7 15 35 

Only the fastest models (75 and 95) were hardwired 

September 21, 2005 



6.823 L4- 33 
Arvind 

Microcode Emulation


•	 IBM initially miscalculated the importance of 
software compatibility with earlier models 
when introducing the 360 series 

•	 Honeywell stole some IBM 1401 customers by 
offering translation software (“Liberator”) for 
Honeywell H200 series machine 

•	 IBM retaliated with optional additional 
microcode for 360 series that could emulate 
IBM 1401 ISA, later extended for IBM 7000 
series 
–	 one popular program on 1401 was a 650 simulator, so 

some customers ran many 650 programs on emulated 
1401s 

– (650 simulated on 1401 emulated on 360) 

September 21, 2005 



6.823 L4- 34 

Microprogramming thrived in the 
Arvind 

Seventies 
•	 Significantly faster ROMs than DRAMs were 

available 

•	 For complex instruction sets, datapath and 
controller were cheaper and simpler 

•	 New instructions , e.g., floating point, could 
be supported without datapath modifications 

•	 Fixing bugs in the controller was easier


• ISA compatibility across various models 

could be achieved easily and cheaply


Except for the cheapest and fastest machines, 
all computers were microprogrammed 

September 21, 2005 



6.823 L4- 35 
Arvind 

Writable Control Store (WCS) 
•	 Implement control store with SRAM not ROM 

–	 MOS SRAM memories now almost as fast as control store 
(core memories/DRAMs were 2-10x slower) 

–	 Bug-free microprograms difficult to write 

•	 User-WCS provided as option on several 
minicomputers 
– Allowed users to change microcode for each process 

• User-WCS  failed 
–	 Little or no programming tools support 
–	 Difficult to fit software into small space 
–	 Microcode control tailored to original ISA, less useful for 

others 
–	 Large WCS part of processor state - expensive context 

switches 
–	 Protection difficult if user can change microcode 
–	 Virtual memory required restartable microcode 

September 21, 2005 



6.823 L4- 36 
Arvind 

Microprogramming: late seventies


•	 With the advent of VLSI technology 
assumptions about ROM & RAM speed 
became invalid 

• Micromachines became more complicated

•	 Micromachines were pipelined to overcome slower 

ROM 
•	 Complex instruction sets led to the need for 

subroutine and call stacks in µcode 
•	 Need for fixing bugs in control programs was in 

conflict with read-only nature of µROM 
⇒	WCS (B1700, QMachine, Intel432, …) 

•	 Introduction of caches and buffers, especially 
for instructions, made multiple-cycle 
execution of reg-reg instructions unattractive 

September 21, 2005 



6.823 L4- 37 
Arvind 

Modern Usage 
• Microprogramming is far from extinct 

• Played a crucial role in micros of the Eighties

Motorola 68K series

Intel 386 and 486


• Microcode pays an assisting role in most modern

CISC micros (AMD Athlon, Intel Pentium-4 ...)

• Most instructions are executed directly, i.e., with hard-wired 

control 
• Infrequently-used and/or complicated instructions invoke the 

microcode engine 

• Patchable microcode common for post-fabrication 
bug fixes, e.g. Intel Pentiums load µcode patches 
at bootup 

September 21, 2005 



38 

Thank you !



