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Review of Temporal Logic 

o Engine starts and stops with button push 

- If engine is off, it stays off until I push 

• If I never push it stays on forever 

- If engine is on, it stays on until I push 

• If I never push it stays off forever 

𝐺 𝑜𝑓𝑓 ⇒ 𝑜𝑓𝑓 𝑈 𝑝𝑢𝑠ℎ 

𝐺 (𝑜𝑓𝑓 ⇒ 𝑜𝑓𝑓 𝑈 𝑝𝑢𝑠ℎ ∨ 𝐺 𝑜𝑓𝑓 ) 

𝐺 (𝑜𝑛 ⇒ 𝑜𝑛 𝑈 𝑝𝑢𝑠ℎ ∨ 𝐺 𝑜𝑛 ) 

on, off, push, id 
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The problem with Explicit State MC 

o There are too many states 

- way, way too many states 

o explicit state MC can only scale to about 10^20 states 

- that’s not enough for many systems 
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Symbolic Model Checking 

o Don’t store the state graph 

- keep instead a symbolic representation of the state transition 

system 

o This was a big idea 

- Ken McMillan 
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Key Idea 1: Sets and boolean algebra 

o Set Theory  

- set S={x1, …, xn} 

 

- set union S U E 

 

- set intersection S ∩ E 

 

- empty set Ø 

 

- subset S ⊆ E 

o First Order Logic 

- predicate PS s.t.  

 PS(xi):= true 

- disjunction (PS or PE) 

 

- conjunction (PS and PE) 

 

- PØ = false 

 

- implication PS  PE 

o There is a close connection between set theory and logic 
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Key Idea 2: Predicates as boolean circuits 

o Predicate Ps is defined on a finite universe of symbols X 

 

o We can represent each element of X with a bit-vector 

- we need only log |X| bits per element 

 

o With this representation, Ps can be defined as a circuit 

 

o Ex.  

- Let X be the set of integers between 0 and 232-1 

- Peven(x) = (not xlsb) 
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Key Idea 3: Automata and Sets 

o Automata are defined in terms of sets 

- Kripke Structure = (S, S0, R, L) 

 

- S : Universe of possible states 

• One bit-vector per element of S. 

- S0 defined by a predicate PS0  

 

- R: is a relation, i.e. a set of pairs (si, si+1) 

• PR (si, si+1) 
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Key Idea 4: Decision Procedures 

o We have really good procedures for boolean logic 

- BDDs were state of the art in 1990 

- SAT is more common today 

• BDDs still good for niche applications 

- SMT is rapidly becoming the norm 

• Satisfiability Modulo Theories 

• combines SAT with decision procedures for: 

–  integers, arrays, uninterpreted functions, … 
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BDDs 

o Compact representation of a binary tree 

- Remove redundancies 

- Share nodes 

 

o Easy to run certain kinds of queries 

- Emptyness, boolean operations 

 

o They can blow up! 
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Checking Safety Properties 

o Suppose we want to check the property G p 

 

o Strategy:  

- compute the set of reachable states Sreach 

- check if an element of Sreach satisfies (not p) 

 

o How do we compute Sreach? 
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Checking Safety Properties 

o Let Si be the set of states reachable after i steps 

- What’s the relationship between Si and Si-1? 

 

o We can define PSi+1 as 

- PSi+1(v) = PSi (v) or   ∃ x { Psi(x) and R(x, v)} 

- This is a recursive definition 

- We can find PS∞ by iteratively computing Psi until we find a fixed 

point 

• PS1(x) = PS0(x) or (PS0(x0) and R(x0, x)) 

• PS2(x) = PS1(x) or (PS0(x0) and R(x0, x1) and R(x1, x)) 

• PS3(x) = PS2(x) or (PS0(x0) and R(x0, x1) and R(x1, x2) and R(x2, x)) 
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Checking Safety Properties 

o Two big questions 

- How do we know if we have reached a state where (not p)? 

• that’s easy 

• we can assume a predicate Pp(x) that is true for any state where p 

holds 

• x is a reachable bad state if (not Pp(x) ) and PSi(x) 

- How do we know when we have explored all reachable states? 

• when Psi = Psi+1 

• i.e. not Psi (x) and (Psi+1(x)) becomes unsatisfiable 

 

o The challenge 

-  Can we generalize this to work for arbitrary formulas? 
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Checking General CTL Formulas 

o Why CTL 

- it’s “easy” 

o We’ll consider only the following formulas: 

- p ::= E X p | E G p | E (p U q) | p binop q 
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Basic Intuitions 

o We can map CTL formulas to the states where the 

formula holds 
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Basic Intuitions 

o We can map CTL formulas to the set of states where the 

formula holds 

 

o Sets of states == Boolean formula 

- We can recursively map CTL formulas to boolean formulas 
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Model Checking CTL properties 

o We will do it with a recursive CHECK procedure 

- Input: A CTL property P  

- Output: A boolean formula representing the states that satisfy P 

 

o Cases 

- P is a boolean formula: Check(P) = P 

- P = EX p, then Check(P) = CheckEX(Check(p)) 

- P = E p U q, then Check(P) = CheckEU(Check(p), Check(q)) 

- P = E G p, then Check(P) = CheckEG(Check(p)) 
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CheckEX 

o CheckEX(p) returns a set of states such that p is true in 

their next states 

- So if 𝐶ℎ𝑒𝑐𝑘𝐸𝑋 𝑝 ≡ 𝑄 then 𝑄 𝑥 ≡ ∃𝑥′ 𝑠. 𝑡. 𝑅 𝑥, 𝑥′ ∧ 𝑝(𝑥′) 
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CheckEU 

o CheckEU(p, q) returns a set of states such that 

- Either q is true in that state or 

- p is true in that state and you can get from it to a state in which 

E(p U q) is true 

- 𝑍𝑘 𝑣 = (𝑞 𝑣 ∨ [𝑝 𝑣 ∧ ∃𝑣′𝑅 𝑣, 𝑣′ ∧ 𝑍𝑘−1 𝑣′ ] 

- 𝑍0 𝑣 = 𝑓𝑎𝑙𝑠𝑒 

- CheckEU(p,q) ≡ 𝑍∞ 
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CheckEG 

o What about CheckEG(p) 

- p is true in the current state and you can get from this state to 

another state where EG(p) is true 

- 𝑍𝑘 𝑣 = 𝑝 𝑣 ∧ ∃𝑣′𝑅 𝑣, 𝑣′ ∧ 𝑍𝑘−1(𝑣′) 

- 𝑍0 𝑣 = 𝑡𝑟𝑢𝑒 

- CheckEG(p) ≡ 𝑍∞ 

 

o How do we know these formulas are well defined? 
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Fixpoints 

o Let 𝜮 be a set with 𝜮’ ⊆ 𝜮  

o Let 𝜏: P(𝜮)  P(𝜮) 

o Some properties: 

- 𝜮’ is a fixpoint if 𝜏(𝜮’) = 𝜮’ 

- 𝜏 is monotonic iff P ⊆ Q  𝜏(P) ⊆ 𝜏(Q) 

- 𝜏 is U-continuous iff P1 ⊆ P2 ⊆ P3 ⊆ …  𝜏(U Pi) = U 𝜏(Pi) 

- 𝜏 is ∩-continuous iff P1 ⊆ P2 ⊆ P3 ⊆ …  𝜏(∩ Pi) =  ∩ 𝜏(Pi) 

o Main theorem 

- A monotonic 𝜏 always has a least fixed point:  

𝜇 Z. 𝜏(Z) = ∩{ Z | 𝜏(Z) ⊆ Z} 

= ∩ 𝜏i(𝜮) when 𝜏 is ∩-continuous 

- A monotonic 𝜏 always has a greatest fixed point:  

𝜈 Z. 𝜏(Z)=U{ Z | 𝜏(Z) ⊇ Z} 

 = U 𝜏i(Ø) when 𝜏 is U-continuous 
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Fixpoints 

o If 𝜮 is finite, and 𝜏  is monotonic,  

o then it is 𝜏 is ∩-continuous and U-continuous 
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CTL in terms of fixpoints 

o Given a CTL formula, we want to characterize the set of 

states that satisfy the formula 

 

o A G p = 𝜈 Z. 𝜏(Z)  where 𝜏(Z) = p and A X Z 
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