Introduction to Abstract Interpretation

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory
MIT
With some slides from Saman Amarasinghe. Used with permission.

November 4, 2015

Course Recap

What you have learned so far

Operational Semantics

- How will a given program behave on a given input?
- This is the ground truth for any analysis

Types

- Annotations describe properties of the data that can be refered by a variable.
- Easy to describe properties that are global to the execution, but only one variable at a time (at least with the machinery we have seen here)
- Properties are fixed a priori by the type system designer
- Actual analysis is cheap
- Annotations can often be inferred

Program Logics

- Annotations describe properties of the state at a given point in the program.
- Easy to describe complex properties of the overall program state, but messy to describe properties that hold over time
- Logic provides a rich language for properties
- Actual analysis can be expensive
- Annotations are hard to infer

Some motivation

```
{true}
y=0;
while(x<10){
    x = x+1;
    y = y+2;
}
{even(y)}
```

What is the loop invariant? Intuition:

- The loop invariant is a set of states
- C transforms elements in $A \wedge b$ to other elements in A.

Simplifying the problem

```
{true}
y=0;
while(x<10){
    x = x+1;
    y = y+2;
}
{even(y)}
```

This rule is strictly weaker

- Many correct programs can't be proved with it
Simpler Intuition:
- The loop invariant is a set of states
- C transforms elements in A to other elements in A.

Discovering the invariant

There may be many candidates for A

- True is always an invariant
A2

Discovering the invariant

We want a set A such that $\dashv\{A\} c\{A\}$

- It should be small enough to prove the postcondition (strong)
- But big enough to prove the precondition (weak)

Let $F(P)=w p c(c, P) \wedge$ Post

- Then what we want is a greatest fixpoint solution of $A=F(A)$

Convergence properties

- Can we always find such solutions?

Forward vs. Backward

- When is it better to use wpc vs. spc?

Precision

- How do we minimize the loss of precision?

Partial Orders

Set P

Partial order \leq such that $\forall x, y, z \in P$

- $\mathrm{x} \leq \mathrm{x}$
(reflexive)
- $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ implies $\mathrm{x}=\mathrm{y} \quad$ (asymmetric)
- $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ implies $\mathrm{x} \leq \mathrm{z}$
(transitive)
Can use partial order to define
- Upper and lower bounds
- Least upper bound
- Greatest lower bound

Upper Bounds

If $\mathrm{S} \subseteq \mathrm{P}$ then

- $x \in P$ is an upper bound of S if $\forall y \in S . y \leq x$
- $x \in P$ is the least upper bound of S if
- x is an upper bound of S, and
- $\mathrm{x} \leq \mathrm{y}$ for all upper bounds y of S
- v - join, least upper bound, lub, supremum, sup
- $\vee \mathrm{S}$ is the least upper bound of S
- $x \vee y$ is the least upper bound of $\{x, y\}$
- Often written as U as well

Lower Bounds

If $S \subseteq P$ then

- $x \in P$ is a lower bound of S if $\forall y \in S . x \leq y$
$-x \in P$ is the greatest lower bound of S if
- x is a lower bound of S, and
- $y \leq x$ for all lower bounds y of S
$-\wedge$ - meet, greatest lower bound, glb, infimum, inf
- $\wedge S$ is the greatest lower bound of S
- $x \wedge y$ is the greatest lower bound of $\{x, y\}$
- Often written as \square as well

Covering

$\mathrm{x}<\mathrm{y}$ if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{x} \neq \mathrm{y}$
x is covered by y (y covers x) if

- $\mathrm{x}<\mathrm{y}$, and
- $\mathrm{x} \leq \mathrm{z}<\mathrm{y}$ implies $\mathrm{x}=\mathrm{z}$

Conceptually,

- y covers x if there are no elements between x and y

Lattices

If $\mathrm{x} \wedge \mathrm{y}$ and $\mathrm{x} \vee \mathrm{y}$ exist for all $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ then P is a lattice

If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$ then P is a complete lattice

All finite lattices are complete
Example of a lattice that is not complete

- Integers I
- For any $x, y \in I, x \vee y=\max (x, y), x \wedge y=\min (x, y)$
- But $\vee I$ and $\wedge I$ do not exist
- I $\cup\{+\infty,-\infty\}$ is a complete lattice

Example

$$
P=\{000,001,010,011,100,101,110,111\}
$$

(standard boolean lattice, also called hypercube)
$x \leq y$ if (x bitwise and y) $=x$

Hasse Diagram

- If y covers x
- Line from y to x
- y above x in diagram

Top and Bottom

Greatest element of P (if it exists) is top (T)
Least element of P (if it exists) is bottom (\perp)

Connection Between \leq, \wedge, and \vee

The following 3 properties are equivalent:

- $\mathrm{x} \leq \mathrm{y}$
$-x \vee y=y$
$-x \wedge y=x$

Chains

A set S is a chain if $\forall x, y \in S . y \leq x$ or $x \leq y$
P has no infinite chains if every chain in P is finite

Saman Amarasinghe
6.035
© MIT Fall 1998

Product Latices

Given two latices L and Q , the product can easily be made a latice

$$
\left(l_{1}, q_{1}\right) \sqsubseteq\left(l_{2}, q_{2}\right) \Leftrightarrow l_{1} \sqsubseteq l_{2} \text { and } q_{1} \sqsubseteq q_{2}
$$

For vectors of L, defining a latice is also easy

$$
\left\langle l_{1}, l_{2}, \ldots, l_{k}\right\rangle \sqsubseteq\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle \Leftrightarrow \forall_{i \in[1, k]} l_{i} \sqsubseteq t_{i}
$$

Back to our problem

$$
\begin{aligned}
& \text { \{true }\} \\
& \mathrm{y}=0 ; \\
& \text { while }(x<10)\{ \\
& \begin{array}{l}
x=x+1 ;
\end{array} \\
& \begin{array}{l}
y=y+2 ;
\end{array} \\
& \left\{\begin{array}{c}
\text { (}
\end{array}\right. \\
& \{\operatorname{even}(y)\}
\end{aligned}
$$

A latice of predicates:

- <($\mathrm{x}=1$, even, odd, T)>
- $\mathrm{Ex}:\langle x=$ even, $y=o d d\rangle \sqsubseteq\langle x=\mathrm{T}, y=o d d\rangle$

What does this have to do with our problem?

Latices and fixpoints

Order Preserving (Monotonic) Function:

$$
x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)
$$

Now, let x_{\perp} be the least fixed point of $f: L \rightarrow L$

- so $f\left(x_{\perp}\right)=x_{\perp}$

Now, let $x_{0}=\perp$ and $x_{i}=f\left(x_{i-1}\right)$

- By induction, $x_{i} \sqsubseteq x_{\perp}$
- Also, the chain x_{i} is an ascending chain
- If L has no infinite ascending chains, sooner or later $x_{i}=x_{i+1}=x_{\perp}$

Same trick works for greatest fixed point!

- But then you have to start with $x_{0}=\mathrm{T}$

Back to our problem

```
{true}
y=0;
while(x<10){
    x = x+1;
    y = y+2;
}
{even(y)}
```

A latice of predicates:

- < (x = \perp, even, odd, T$)>$
- $\mathrm{Ex}:\langle x=$ even, $y=o d d\rangle \sqsubseteq\langle x=\mathrm{T}, y=o d d\rangle$

$$
x=\left\{\begin{array}{c}
\mathrm{T} \\
\text { odd } \\
\text { even } \\
\perp
\end{array}\right.
$$

Could be odd or even definitely odd definitely even who cares

We now have a recipe to find a greatest fixpoint solution

- As long as $F(P)=w p c(c, P) \wedge$ Post is monotonic in our latice

Finding a fixpoint

$$
\left.\begin{array}{l}
\{x=\mathrm{T}, \boldsymbol{y}=\mathrm{T}\} \\
\mathrm{y}=0 ; \\
\text { while }(\mathrm{x}<10)\{ \\
\begin{array}{l}
\mathrm{x}=\mathrm{x}+1 ;
\end{array} \\
\mathrm{y}=\mathrm{y}+2 ;
\end{array}\right\} \begin{aligned}
& \{x=\mathrm{T}, y=\text { even }\}
\end{aligned}
$$

Could be odd or even definitely odd definitely even who cares
$F(P)=w p c(c, P) \wedge$ Post

- $P_{0}=\{x=\mathrm{T}, y=\mathrm{T}\}$
- $P_{1}=\{x=\mathrm{T}, y=$ even $\}$
- $P_{2}=\{x=\mathrm{T}, y=e v e n\}$
- Success!

Complicating things a bit

$$
\begin{aligned}
& \{\boldsymbol{x}=\mathrm{T}, \boldsymbol{y}=\mathrm{T}\} \\
& \mathrm{y}=0 ; \mathrm{t}=1 \text {; } \quad \text { 了 } \mathrm{c} \\
& \text { while (} x<10 \text {) }\{ \\
& \begin{array}{l}
\mathrm{x}=\mathrm{x}+1 ; \\
\mathrm{y}=\mathrm{y}+2 ;
\end{array} \quad \text { - } \mathrm{C} 1 \\
& \text { if(} x=5 \text {) }\{ \\
& \mathrm{t}=\mathrm{t}+2 \text {; } \quad \text { c2 } \\
& \frac{\vdash\{A \wedge b\} c_{1}\{B\} \quad \vdash\{A \wedge \text { not } b\} c_{2}\{B\}}{\vdash\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}} \\
& \text { Relaxed Rule } \\
& \frac{\vdash\{A \wedge b\} c_{1}\{B\} \quad \vdash\{A \wedge \text { not } b\} c_{2}\{B\}}{\vdash\{A\} \text { if b then } c_{1} \text { else } c_{2}\{B\}} \\
& F(P)=w p c(c, P) \wedge \text { Post } \\
& =w p c(c 1, w p c(c 2, P) \wedge w p c(c 3, P)) \wedge \text { Post } \\
& \text { \} } \\
& \} \\
& \{x=\mathrm{T}, \boldsymbol{y}=\boldsymbol{e v e n}\}
\end{aligned}
$$

Dataflow equations

$$
\begin{aligned}
& \text { Big <=> Weak } \\
& \text { So } A \Rightarrow B \\
& \text { is equivalent to } \\
& \quad A \sqsubseteq B
\end{aligned}
$$

$$
\begin{array}{ll}
\{x=\mathrm{T}, y=\mathrm{T}\} & <-\mathrm{P} 1 \\
\mathrm{y}=0 ; \mathrm{t}=1 ; & \} \mathrm{cc}
\end{array}
$$

$$
\begin{aligned}
F(P) & =w p c(c, P) \wedge \text { Post } \\
& =w p c(c 1, w p c(c 2, P) \wedge w p c(c 3, P)) \wedge \text { Post }
\end{aligned}
$$

$$
\text { while }(x<10)\{<-P 2
$$

$$
\begin{aligned}
& p 1 \sqsubseteq w p c(c 0, p 2) \\
& \hline p 2 \sqsubseteq w p c(c 1, p 3) \\
& p 3 \sqsubseteq w p c(c 2, p 2) \wedge w p c(c 3, p 2) \\
& p 2 \sqsubseteq p 5
\end{aligned}
$$

$$
\leftrightarrow \quad p 2 \sqsubseteq w p c(c 1, p 3) \wedge p 5
$$

\}

$$
\{x=\mathrm{T}, \boldsymbol{y}=\text { even }\} \quad<-\mathrm{P} 5
$$

Dataflow equations

$$
\begin{aligned}
& \{\boldsymbol{x}=\mathrm{T}, \boldsymbol{y}=\mathrm{T}\}<-\mathrm{P} 1 \quad p 1 \sqsubseteq w p c(c 0, p 2) \\
& \mathrm{y}=0 ; \mathrm{t}=1 \text {; } \quad \text { - ce } \\
& \text { while }(\mathrm{x}<10) \text { \{ <-P2 } \\
& \begin{array}{l}
x=x+1 ; \\
y=y+2 ;
\end{array} \quad-\mathrm{C} 1 \\
& \text { if(} \mathrm{x}=5 \text {) \{ <-P3 } \\
& \mathrm{t}=\mathrm{t}+2 \text {; 了 } \mathrm{c} 2 \\
& p 2 \sqsubseteq w p c(c 1, p 3) \wedge p 5 \\
& p 3 \sqsubseteq w p c(c 2, p 2) \wedge w p c(c 3, p 2) \\
& \text { \}else\{ } \\
& \mathrm{y}=\mathrm{t}+1 ; \quad \text { 〕c3 } \\
& \text { \} } \\
& \text { <-P2 } \\
& \text { \} } \\
& \{x=\mathrm{T}, \boldsymbol{y}=\boldsymbol{e v e n}\} \quad<-\mathrm{P} 5
\end{aligned}
$$

Dataflow Analysis

General Analysis Framework

- Developed by Kildall in 1973
- Traditionally used for compiler optimization

Frame analysis question as a set of equations on a $\underline{C F G}$

Control Flow Graph

$\{x=T, y=T\}<-P 1$
$\mathrm{y}=0 ; \mathrm{t}=1$;
while $(\mathrm{x}<10)$ \{ <-P2
$\mathrm{x}=\mathrm{x}+1$;
$\mathrm{y}=\mathrm{y}+2$;
if(x=5) \{
$\mathrm{t}=\mathrm{t}+2$;
\}else\{

$$
<-P 3
$$

$$
\mathrm{y}=\mathrm{t}+1
$$

$$
\text { \} }
$$

$$
<-P 2
$$

$\}$
$\{x=\mathrm{T}, y=$ even $\} \quad<-\mathrm{P} 5$

Control Flow Graph

Very general program representation

- Easy to represent unstructured control flow
- Widely used by most program analysis tools for imperative languages

Solution strategy

For every basic block we have an equation of the form

- Out $\subseteq F(i n)$
- Use meet (\wedge) when many edges meet together

We can solve through "Chaotic Iteration"

- Keep a list of nodes to update
- Pick one CFG node at a time
- Update out from new in
- If out changed, add its children to the list

Computing transfer function

So far we defined it in terms of weakest precondition.

- Or alternatively, strongest postcondition
- Too general and expensive!

We can hard-code a transfer function specific to the lattice

- For finite lattices they can be implemented cheaply in terms of bitvector operations

We can build lattices for arbitrary facts about the program

- Need to make sure our transfer functions are monotonic

Example: Reaching Definitions

Concept of definition and use

- $\mathrm{a}=\mathrm{x}+\mathrm{y}$
- is a definition of a
- is a use of x and y

A definition reaches a use if

- value written by definition
- may be read by use

Reaching Definitions

Reaching Definitions and Constant Propagation

Is a use of a variable a constant?

- Check all reaching definitions
- If all assign variable to same constant
- Then use is in fact a constant

Can replace variable with constant

Is a Constant in $\mathbf{s}=\mathbf{s + a} \mathbf{a} \mathbf{b}$?

Constant Propagation Transform

Is \mathbf{b} Constant in $\mathbf{s}=\mathbf{s}+\mathbf{a} * \mathbf{b}$?

Computing Reaching Definitions

Compute with sets of definitions

- represent sets using bit vectors
- each definition has a position in bit vector

At each basic block, compute

- definitions that reach start of block
- definitions that reach end of block

Do computation by simulating execution of program until reach fixed point

0000000

Transfer functions

Each basic block has

- IN - set of definitions that reach beginning of block
- OUT - set of definitions that reach end of block
- GEN - set of definitions generated in block
- KILL - set of definitions killed in block

GEN[s = s + a*b; i = i + 1;] = 0000011
KILL[s = s + a*b; i = i + 1;] = 1010000
Analyzer scans each basic block to derive GEN and KILL sets for each function

Dataflow Equations

IN[b] = OUT[b1] U ... U OUT[bn]

- where $\mathrm{b} 1, \ldots$, bn are predecessors of b in CFG

OUT[b] = (IN[b] - KILL[b]) U GEN[b]
IN[entry] = 0000000
Result: system of equations

Solving Equations

Use fixed point algorithm
Initialize with solution of OUT[b] $=0000000$
Repeatedly apply equations

- IN[b] = OUT[b1] U ... U OUT[bn]
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]

Until reach fixed point
Until equation application has no further effect

Use a worklist to track which equation applications may have a further effect

[^0]
Questions

Does the algorithm halt?

- yes, because transfer function is monotonic
- if increase IN, increase OUT
- in limit, all bits are 1

If bit is 0 , does the corresponding definition ever reach basic block?
If bit is 1 , is does the corresponding definition always reach the basic block?

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: Saman Amarasinghe
 6.035
 (C)MIT Fall 1998

