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Course Recap 

o What you have learned so far 

Operational Semantics 
• How will a given program behave on a given input? 

• This is the ground truth for any analysis 

Types 
• Annotations describe properties of 

the data that can be refered by a 

variable. 

• Easy to describe properties that 

are global to the execution, 

but only one variable at a time  

(at least with the machinery we 

have seen here) 

Program Logics 
• Annotations describe properties of 

the state at a given point in the 

program. 

• Easy to describe complex 

properties of the overall program 

state, but messy to describe 

properties that hold over time 

• Properties are fixed a priori by the 

type system designer 

• Actual analysis is cheap 

• Annotations can often be inferred 

• Logic provides a rich language for 

properties 

• Actual analysis can be expensive 

• Annotations are hard to infer 

? 
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Some motivation 

o What is the loop invariant? 

o Intuition:  

- The loop invariant is a set of states 

- C transforms elements in 𝐴 ∧ 𝑏 to  

other elements in 𝐴. 

 

 

{true} 
y=0; 
while(x<10){ 
  x = x+1; 
  y = y+2; 
} 
{even(y)} 

A 
 
 
 
𝑨 ∧ 𝒃 

 
 
 

𝑨 ∧ ¬𝒃 
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Simplifying the problem 

o This rule is strictly weaker 
- Many correct programs can’t be proved 

with it 

o Simpler Intuition:  

- The loop invariant is a set of states 

- C transforms elements in A to  

other elements in A. 

 

 

{true} 
y=0; 
while(x<10){ 
  x = x+1; 
  y = y+2; 
} 
{even(y)} 

A 
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Discovering the invariant 

o There may be many candidates for A 

- True is always an invariant 

A1 

A0 

A2 

Postcondition Big <=> Weak 

Precondition 
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Discovering the invariant 

o We want a set 𝐴 such that ⊣ 𝐴 𝑐 {𝐴}  
- It should be small enough to prove the postcondition (strong) 

- But big enough to prove the precondition (weak) 

 

o Let 𝐹 𝑃 =  𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡 
- Then what we want is a greatest fixpoint solution of A=F(A) 

 

o Convergence properties 

- Can we always find such solutions?  

o Forward vs. Backward 

- When is it better to use wpc vs. spc? 

o Precision 

- How do we minimize the loss of precision? 
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Partial Orders 

o Set P 

o Partial order  such that x,y,zP 

- x  x      (reflexive) 

- x  y and y  x implies x  y  (asymmetric) 

- x  y and y  z implies x  z  (transitive) 

o Can use partial order to define 

- Upper and lower bounds 

- Least upper bound 

- Greatest lower bound 
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Upper Bounds 

o If S  P then 

- xP is an upper bound of S if yS. y  x 

- xP is the least upper bound of S if 

• x is an upper bound of S, and  

• x  y for all upper bounds y of S 

-  - join, least upper bound, lub, supremum, sup 

•  S is the least upper bound of S 

• x  y is the least upper bound of {x,y} 

- Often written as ⊔ as well 
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Lower Bounds 

• If S  P then 
– xP is a lower bound of S if yS. x  y 

– xP is the greatest lower bound of S if 

• x is a lower bound of S, and  

• y  x for all lower bounds y of S 

–  - meet, greatest lower bound, glb, infimum, inf 

•  S is the greatest lower bound of S 

• x  y is the greatest lower bound of {x,y} 

• Often written as ⊓ as well 
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Covering 

o x y if x  y and xy  

o x is covered by y (y covers x) if 

- x  y, and 

- x  z  y implies x  z 

o Conceptually,  

- y covers x if there are no elements between x and y 
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Lattices 

o If x  y and x  y exist for all x,yP 

o then P is a lattice 

 

o If S and S exist for all S  P 

o  then P is a complete lattice 

 

o All finite lattices are complete 

o Example of a lattice that is not complete 

- Integers I 

- For any x, yI, x  y = max(x,y), x  y = min(x,y) 

- But  I and  I do not exist 

- I  {, } is a complete lattice 

11

Saman Amarasinghe
 6.035      
©MIT Fall 1998 



Example 

o P = { 000, 001, 010, 011, 100, 101, 110, 111} 
(standard boolean lattice, also called hypercube) 

o x  y if (x bitwise and y) = x 

111 

011 

101 

110 

010 

001 

000 

100 

Hasse Diagram 
• If y covers x 

• Line from y to x 

• y above x in diagram 
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Top and Bottom 

o Greatest element of P (if it exists) is top (T) 

o Least element of P (if it exists) is bottom () 
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Connection Between , , and  

o The following 3 properties are equivalent: 

- x  y 

- x  y  y  

- x  y  x 
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Chains 

o A set S is a chain if x,yS. y  x or x  y  

 

o P has no infinite chains if every chain in P is finite 
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Product Latices 

o Given two latices L and Q, the product can easily be 

made a latice 

𝑙1, 𝑞1 ⊑ 𝑙2, 𝑞2 ⇔ 𝑙1 ⊑ 𝑙2 𝑎𝑛𝑑 𝑞1 ⊑ 𝑞2 

 

  

 

o For vectors of L, defining a latice is also easy 

 

 𝑙1, 𝑙2, … , 𝑙𝑘  ⊑ 𝑡1, 𝑡2, … , 𝑡𝑘  ⇔ ∀𝑖∈ 1,𝑘  𝑙𝑖  ⊑ 𝑡𝑖 
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Back to our problem 

o A latice of predicates: 
- <(x = ⊥, 𝑒𝑣𝑒𝑛, 𝑜𝑑𝑑, ⊤)> 

• Ex: 𝑥 = 𝑒𝑣𝑒𝑛, 𝑦 = 𝑜𝑑𝑑  ⊑  𝑥 = ⊤, 𝑦 = 𝑜𝑑𝑑  

 

o What does this have to do with our problem? 

 

{true} 
y=0; 
while(x<10){ 
  x = x+1; 
  y = y+2; 
} 
{even(y)} 

𝑥 =   

⊤ Could be odd or even
𝑜𝑑𝑑 definitely odd
𝑒𝑣𝑒𝑛
⊥

definitely even
who cares

 

⊤ 

𝑜𝑑𝑑 𝑒𝑣𝑒𝑛 

⊥ 
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Latices and fixpoints 

o Order Preserving (Monotonic) Function:  

𝑥 ⊑ 𝑦 ⇒ 𝑓 𝑥 ⊑ 𝑓(𝑦)  

 

o Now, let 𝑥⊥ be the least fixed point of 𝑓: 𝐿 → 𝐿  
- so 𝑓 𝑥⊥ = 𝑥⊥  

 

 

o Now, let 𝑥0 = ⊥ and 𝑥𝑖 = 𝑓 𝑥𝑖−1  

- By induction, 𝑥𝑖 ⊑ 𝑥⊥ 

- Also, the chain 𝑥𝑖 is an ascending chain 

- If L has no infinite ascending chains, sooner or later 𝑥𝑖 = 𝑥𝑖+1 = 𝑥⊥ 

 

o Same trick works for greatest fixed point! 

- But then you have to start with 𝑥0 = ⊤ 18



Back to our problem 

- <(x = ⊥, 𝑒𝑣𝑒𝑛, 𝑜𝑑𝑑, ⊤)> 

• Ex: 𝑥 = 𝑒𝑣𝑒𝑛, 𝑦 = 𝑜𝑑𝑑  ⊑  𝑥 = ⊤, 𝑦 = 𝑜𝑑𝑑  

 

o We now have a recipe to find a greatest fixpoint solution 

- As long as 𝐹 𝑃 =  𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡 is monotonic in our latice 

{true} 
y=0; 𝑥 =   
while(x<10){ 𝑒
  x = x+1; 
  y = y+2; 
} 
{even(y)} 

o A latice of predicates: 

⊤ Could be odd or even
𝑜𝑑𝑑 definitely odd

 
𝑣𝑒𝑛 definitely even
⊥ who cares

⊤ 

𝑜𝑑𝑑 𝑒𝑣𝑒𝑛 

⊥ 
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Finding a fixpoint 

o 𝐹 𝑃 =  𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡 
- 𝑃0 = {𝑥 = ⊤, 𝑦 = ⊤} 

- 𝑃1 = {𝑥 = ⊤, 𝑦 = 𝑒𝑣𝑒𝑛} 

- 𝑃2 = {𝑥 = ⊤, 𝑦 = 𝑒𝑣𝑒𝑛} 

- Success! 

{𝒙 = ⊤, 𝒚 = ⊤} 
y=0; 
while(x<10){ 
  x = x+1; 
  y = y+2; 
} 
{𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏} 

𝑥 =   

⊤ Could be odd or even
𝑜𝑑𝑑 definitely odd
𝑒𝑣𝑒𝑛
⊥

definitely even
who cares
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Complicating things a bit 

o {𝒙 = ⊤, 𝒚 = ⊤} 

o y=0; t=1; 

o while(x<10){ 

o   x = x+1; 

o   y = y+2; 

o   if(x=5){ 

o      t=t+2; 

o   }else{ 

o      y = t+1; 

o   } 

o } 

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏} 

Relaxed Rule 

𝐹 𝑃 =  𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡 

      =   𝑤𝑝𝑐 𝑐1, 𝑤𝑝𝑐 𝑐2, 𝑃 ∧ 𝑤𝑝𝑐 𝑐3, 𝑃 ∧ 𝑃𝑜𝑠𝑡 

C1 

C2 

C3 

C0 
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Dataflow equations 

o {𝒙 = ⊤, 𝒚 = ⊤} 

o y=0; t=1; 

o while(x<10){ 

o   x = x+1; 

o   y = y+2; 

o   if(x=5){ 

o      t=t+2; 

o   }else{ 

o      y = t+1; 

o   } 

o } 

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏} 

𝐹 𝑃 =  𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡 

      =   𝑤𝑝𝑐 𝑐1, 𝑤𝑝𝑐 𝑐2, 𝑃 ∧ 𝑤𝑝𝑐 𝑐3, 𝑃 ∧ 𝑃𝑜𝑠𝑡 

C1 

C2 

C3 

C0 

<-P1 

<-P2 

<-P3 

<-P2 

<-P5 

𝑝1 ⊑ 𝑤𝑝𝑐(𝑐0, 𝑝2) 

𝑝2 ⊑ 𝑤𝑝𝑐(𝑐1, 𝑝3) 

𝑝3 ⊑ 𝑤𝑝𝑐 𝑐2, 𝑝2 ∧ 𝑤𝑝𝑐(𝑐3, 𝑝2) 

 𝑝2 ⊑ 𝑝5 

𝑝2 ⊑ 𝑤𝑝𝑐 𝑐1, 𝑝3 ∧ 𝑝5 

Big <=> Weak 
So 𝐴 ⇒ 𝐵 
is equivalent to  
   𝐴 ⊑ 𝐵 
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Dataflow equations 

o {𝒙 = ⊤, 𝒚 = ⊤} 

o y=0; t=1; 

o while(x<10){ 

o   x = x+1; 

o   y = y+2; 

o   if(x=5){ 

o      t=t+2; 

o   }else{ 

o      y = t+1; 

o   } 

o } 

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏} 

C1 

C2 

C3 

C0 

<-P1 

<-P2 

<-P3 

<-P2 

<-P5 

𝑝1 ⊑ 𝑤𝑝𝑐(𝑐0, 𝑝2) 

𝑝2 ⊑ 𝑤𝑝𝑐 𝑐1, 𝑝3 ∧ 𝑝5 

𝑝3 ⊑ 𝑤𝑝𝑐 𝑐2, 𝑝2 ∧ 𝑤𝑝𝑐(𝑐3, 𝑝2) 
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Dataflow Analysis 

o General Analysis Framework  

- Developed by Kildall in 1973 

- Traditionally used for compiler optimization 

 

o Frame analysis question as a set of equations on a CFG 
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Control Flow Graph 

o {𝒙 = ⊤, 𝒚 = ⊤} 

o y=0; t=1; 

o while(x<10){ 

o   x = x+1; 

o   y = y+2; 

o   if(x=5){ 

o      t=t+2; 

o   }else{ 

o      y = t+1; 

o   } 

o } 

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏} 

y=0; 
t=1; 

x=x+1; 
y=y+2; 

t=t+2; y=t-1; 

end 

    

<-P1 

<-P2 

<-P3 

<-P2 

<-P5 

P2 

P1 

P3 

P5 
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Control Flow Graph 

o Very general program representation 

- Easy to represent unstructured control flow 

- Widely used by most program analysis tools for imperative 

languages 
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Solution strategy 

o For every basic block we have an 

equation of the form  

- 𝑂𝑢𝑡 ⊑ 𝐹 𝑖𝑛  

- Use meet (∧) when many 

edges meet together 

 

o We can solve through  

“Chaotic Iteration” 

- Keep a list of nodes to update 

- Pick one CFG node at a time 

- Update 𝑜𝑢𝑡 from new 𝑖𝑛 

- If out changed, add its 

children to the list 

y=0; 
t=1; 

x=x+1; 
y=y+2; 

t=t+2; y=t-1; 

end 

    

P2 

P1 

P3 

P5 
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Computing transfer function 

o So far we defined it in terms of weakest precondition. 

- Or alternatively, strongest postcondition 

- Too general and expensive! 

o We can hard-code a transfer function specific to the 

lattice 

- For finite lattices they can be implemented cheaply in terms of 

bitvector operations 

 

o We can build lattices for arbitrary facts about the 

program 

- Need to make sure our transfer functions are monotonic 
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Example: Reaching Definitions 

o Concept of definition and use 

- a = x+y 

- is a definition of a 

- is a use of x and y 

o A definition reaches a use if  

- value written by definition 

- may be read by use 

29
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Example by  
Saman Amarasinghe     

Reaching Definitions 

 s = 0;  
a = 4;  
i = 0; 
k == 0  

b = 1; b = 2; 

i < n 

s = s + a*b; 
i = i + 1;  return s 
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Reaching Definitions and Constant Propagation 

o Is a use of a variable a constant? 

- Check all reaching definitions 

- If all assign variable to same constant 

- Then use is in fact a constant 

o Can replace variable with constant 

31
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Is a Constant in s = s+a*b? 

 s = 0; 
a = 4; 
i = 0; 
k == 0 

b = 1; b = 2; 

i < n 

s = s + a*b; 
i = i + 1; return s 

Yes! 
On all reaching 

definitions 
a = 4 
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Constant Propagation Transform 

 s = 0; 
a = 4; 
i = 0; 
k == 0 

b = 1; b = 2; 

i < n 

s = s + 4*b; 
i = i + 1; return s 

Yes! 
On all reaching 

definitions 
a = 4 
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Is b Constant in s = s+a*b? 

 s = 0; 
a = 4; 
i = 0; 
k == 0 

b = 1; b = 2; 

i < n 

s = s + a*b; 
i = i + 1; return s 

No! 
One reaching  

definition with 
b = 1 

One reaching  
definition with 

b = 2 
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Computing Reaching Definitions 

o Compute with sets of definitions 

- represent sets using bit vectors 

- each definition has a position in bit vector 

o At each basic block, compute 

- definitions that reach start of block 

- definitions that reach end of block 

o Do computation by simulating execution of program until 

reach fixed point 
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Transfer functions 

o Each basic block has 

- IN - set of definitions that reach beginning of block 

- OUT - set of definitions that reach end of block 

- GEN - set of definitions generated in block 

- KILL - set of definitions killed in block 

o GEN[s = s + a*b; i = i + 1;] = 0000011 

o KILL[s = s + a*b; i = i + 1;] = 1010000 

o Analyzer scans each basic block to derive GEN 

and KILL sets for each function 
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Dataflow Equations 

o IN[b] = OUT[b1] U ... U OUT[bn] 

- where b1, ..., bn are predecessors of b in CFG 

o OUT[b] = (IN[b] - KILL[b]) U GEN[b] 

o IN[entry] = 0000000 

o Result: system of equations 
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Solving Equations 
o Use fixed point algorithm 

o Initialize with solution of OUT[b] = 0000000 

o Repeatedly apply equations 

- IN[b] = OUT[b1] U ... U OUT[bn] 

- OUT[b] = (IN[b] - KILL[b]) U GEN[b] 

o Until reach fixed point  

o Until equation application has no further 

effect 

o Use a worklist to track which equation 

applications may have a further effect 
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Questions 

o Does the algorithm halt? 

- yes, because transfer function is monotonic 

- if increase IN, increase OUT 

- in limit, all bits are 1 

 

o If bit is 0, does the corresponding definition ever 

reach basic block? 

o If bit is 1, is does the corresponding definition 

always reach the basic block? 
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