
Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory

M.I.T.

 L06-1

September 28, 2015

More Symple Types
Progress And Preservation

September 28, 2015

Formalizing a Type System
Recap

September 28, 2015

 L06-3

Static Semantics

• Typing rules
– Typing rules tell us how to derive typing judgments

– Very similar to derivation rules in Big Step OS

• Ex. Language of Expressions

 L06-4

Ex. Language of Expressions

• Show that the following Judgment is
valid

 L06-5

Simply Typed 𝜆 Calculus (F1)

• Basic Typing Rules

• Extensions

 L06-6

Example

• Is this a valid typing judgment?

• How about this one?

 L06-7

Example

• What’s the type of this function?
 (𝜆 f. 𝜆 x. if x = 1 then x else (f f (x-1)) * x)

– Hint: This IS a trick question

 L06-8

Simply Typed 𝜆 Calculus (F1)

• We have defined a really strong type
system on 𝜆-calculus
– It’s so strong, it won’t even let us write non-

terminating computation

– We can actually prove this!

Progress and Preservation

September 28, 2015

 L06-10

What makes a type system “correct”

• “Well typed programs never go wrong”

• Inductive argument
– Preservation: If a program is well typed it will stay well

typed in the next step of evaluation

– Progress: If a program is well typed now, it won’t go
wrong in the next step of evaluation

• What do we mean by “step of evaluation”?

September 28, 2015

 L06-11

Preservation

• Using Big-Step semantics we can argue
global preservation

• Prove by induction on the structure of
derivation of 𝑒1 → 𝑒2

September 28, 2015

Γ ⊢ 𝑒1: 𝜏 ∧ 𝑒1 → 𝑒2 ⇒ Γ ⊢ 𝑒2: 𝜏

 L06-12

Proof by induction on Structure
of Evaluation

• Base cases: trivial

• Inductive case is a little trickier

September 28, 2015

𝑒1 → 𝜆𝑥. 𝑒1
′ 𝑒1

′ 𝑒2 𝑥 → 𝑒3
𝑒1 𝑒2 → 𝑒3

 L06-13

Induction on the Structure of the
Derivation

• Inductive case

– Given we want to show that

– By our typing rule, we have

– And by the IH, we have that

– Which again by the typing rule

– Now, we need to show that

– And from our IH

𝑒1 → 𝜆𝑥. 𝑒1
′ 𝑒1

′ 𝑒2 𝑥 → 𝑒3
𝑒1 𝑒2 → 𝑒3

Γ, 𝑥: 𝜏′ ⊢ 𝑒1
′ : 𝜏𝑒12 ∧ Γ ⊢ 𝑒2: 𝜏′ ⇒ Γ ⊢ 𝑒1

′ 𝑒2 𝑥 : 𝜏𝑒12

Γ ⊢ 𝑒1
′ 𝑒2 𝑥 : 𝜏𝑒12 ⇒ Γ ⊢ 𝑒3: 𝜏𝑒12

 L06-14

Small Step Semantics

• Big step goes directly from initial
program to result

• Small Step evaluates one step at a time

September 28, 2015

 L06-15

Small Step Example

• Contexts
 H ::= o | H e1 | H + e | n + H |

 if H then e1 else e2 |
 H == e1 | n == H

• Local Reduction Rules
– n1 + n2 n (where n = plus n1 n2)

– n1 == n2 b (where b =(equals n1 n2))

– if true then e1 else e2 e1

– if false then e1 else e2 e2

– (𝜆x:𝜏.e1) v2 [v2/x] e1

• Global Reduction Rules
– H[r] H[e] iff r e

 L06-16

The proof strategy

• Progress Theorem
 If ├ e:𝜏 and e is not a value, then there is an e’ s.t.

e e’

• We can prove this through a
decomposition lemma
– If ├ e:𝜏 and e is not a value, then there are H and r

s.t. e = H[r]

– This guarantees one step of progress

 L06-17

Proving the Progress Theorem

If ├ e:𝜏 and e is not a value, then there is an e’ s.t.
e e’

or equivalently, e = H[r]

• Proved by induction on the derivation of
├ e:𝜏

• Base case:
– Irreducible values

 L06-18

Proving the Progress Theorem

• Inductive case

– by the IH, e can be irreducible,

• in which case it must be true or false and the
whole thing is a redex

– Or, it can be decomposed into H[r]

• in which case if H then e1 else e2 is a valid
context.

MIT OpenCourseWare

http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

