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Problem 15.7 (4pts):  Design of a PID controller 
a).  From Eq. (15.5), the transfer function after normalizing the frequency to the undamped resonant frequency is, 

X s( )  1/  k 
( )  

= ( )  
2 1 ,H s = 

F s  ŝ + ŝ +1
Q 

where we have, 

ŝ = 
s , whereωo = 2π ⋅50kHz = π ×105 ra /d s 
ωo 

k =ω2 π 2  10  d s  −9 ( π 2m = ×10 (ra / )×10 kg ) = 10 o 

Q = 10 
And hence, 

H s( )ˆ = 
10π 2 ( ŝ2 

1 
+ 0.1ŝ +1) 

b).  We will use a single pole controller, which has the form 

( )ˆ = 
KK s  o 

1 0.1ŝ+ 
The loop transfer function is hence, 

H s K s  ˆ ( )ˆ Ko /10 π 2 

( )  =
(0.1ŝ +1) ( ŝ2 + 0.1 ŝ +1) 

Using Matlab command rlocus(sys), the root locus plot of the closed loop transfer function is shown in 
Figure 1 below.  A zoomed-in view of the root near the imaginary axis as shown Figure 2 reveals that the maximum 
gain Ko  at which the two poles will coincide with the imaginary axis and hence the system will become unstable is 
98.9.  The Matlab code used to generate these two plots is provided. 

Figure 1. Root locus plot of the closed loop transfer function. Figure 2. Zoomed-in view near the imaginary axis. 
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% root locus plot 

clear all;
close all; 

Hden=[1 0.1 1];
Hnum=[1/10/pi^2];
H=tf(Hnum,Hden) 

Kden=[0.1 1];
Knum=[1];
K=tf(Knum,Kden); 

sys=H*K; 

rlocus(sys); 

c).  Instead of using a single-pole controller, we will design a PID controller that achieves overall critically damped 
system.  A normalized PID controller has the form, 

⎛ β ⎞K ( )ŝ = Ko ⎜1+  +  γ ŝ ⎟
⎝ ŝ ⎠ 

The closed loop transfer function now becomes, 
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This is a third order system with 3 poles and 2 zeros. We know that for a second order system, critically damped 
response means that the system transfer function has two real poles that are equal, and as a result, the system 
achieves steady state with the fastest response without overshoot.  In order for the system to exhibit a second order 
behavior, we ideally would want to have 2 equal real poles and a third pole that would cancel out a zero. It turns out 
that for this problem, it is not possible to achieve the critical damping with a PI controller.   What we can do, 
however, is to have a third pole that is much larger than the 2 real poles such that its fast response does not have 
much noticeable effect on the second order system behavior.  Therefore, we can express the denominator as, 

ŝ + a ŝ + b , where  a   b(  ) ( )2 

And by comparison, we have, 
⎧ 1 Koγ 
⎪Q k

a 2b+ = +  
⎪ 
⎪ K 
⎨1+ o = b2 + 2ab  
⎪ k 
⎪Ko 2 
⎪ k 

β = ab 
⎩ 

There could be many choices for a and b that could satisfy the criteria of critical damping, and without 
further specification on the rise time, for example, we will choose one pair that works.  From part a), we can derive 
that the plant H(s) has two complex poles 0.05 ± j . In order to have faster response, we want to have two real poles 
move to the left of the S-plane.  Let’s choose b=1, and a=1000, say.  We can derive that, 

⎧K = 2000 k 2 4 2= ×  10 π 
⎪

o 

⎨β = 0.5 
⎪
⎩γ = 0.501 

Hence the PID controller that is chosen is, 
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K ŝ = ×2 10 4 π 2 ⎛
⎜1+
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⎞( ) s

⎝ ŝ ⎠


The root locus plot of the new loop transfer function  


2 10  3 ⎛
⎜1+
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+ ŝ ⎞⎟× 0.501  

H s K s  = 
2

( )ˆ ( )  ˆ 
( ŝ 
⎝
+ 0.1

ŝ 
ŝ +1)
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is shown in Figure 3.  The two zeros are very close to the real poles. Although it is advantageous to have the zeros 
far away from the dominant poles, since the zeros of a system affect pretty much the amplitude, rather than the 
oscillation nature of the system (as long as they are in the negative half of the s-plane), we do not have to worry 
about them too much.  The step response of the overall closed loop system is shown in Figure 4, demonstrating the 
critical damped response, with a rise time on the order of 3 ms. 

Figure 3. Root locus plot of the system with PID controller. Figure 4. Step response of the system wit PID controller. 

The MATLAB coding used for this portion of the problem is provided below: 

% root locus plot 

clear all;
close all; 

Hden=[1 0.1 1];
Hnum=[1/10/pi^2];
H=tf(Hnum,Hden) 

Kden=[1 0];
ko=20000*pi^2;
Knum=ko*[0.501 1 0.5];
K=tf(Knum,Kden); 

sys=H*K 

rlocus(sys); 

figure
step(sys/(1+sys),0.01) 
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Problem 15.8 (4pts):  Stability and capacitive loads 

a). Determine the loop transmission function H(s)K(s) 

V Vo 
+ 
-

+ 

- K(s) 

C 
V 

Vo 
Ro 

C+ 
-

+ 
-

K(s)(v -v )+ -

v-

v+ 

(A) (B) 

From the circuit model on the left, we have 
V− =V0


V +=V


Applying KCL at the node connecting the output resistor and the capacitor: 
V0 − K s (V −V0 ) V0+ = 0 

R0 1 
sC 

Rearrange terms, we get, 

Vo = 
K (s) 

⋅ (V −V0 )
1 + R ⋅ s ⋅Co 

The model is equivalent to a linear feedback system with an overall transfer function as, 
V0 = H (s)K (s)(V −V0 ) 

which is referred to as Black’s formula. 
The Loop transmission function is hence, 

H (s)K (s) = 
K (s) 

1+ R ⋅ s ⋅Co 

b). Assuming  
103.5 

( )  =K s  
s s) (1+ 8(1+ 2π ×10  5 2π ×10  ) 

The transmission function then becomes 

103.5 1H s K s  =( )  ( )  ⋅ 
1+ o s Cs s R ⋅ ⋅) (1+ 8(1+ 2π ×10  5 2π ×10  ) 

3162.28π 2 

= 2 −5 2 2 −13 −5 3 −13s( π ×10 + Ro ⋅C ⋅π )  (  ×10 + 0.5005×10 ⋅Ro ⋅C ⋅π + s 0.25 ×10 ⋅ Ro ⋅C)π + 0.5005 + s 0.25 ) (  

For the case C = 0, the loop transmission function becomes 

3162.28π 2 

H (s)K (s) = 2 −5 2 −13 )π + s ⋅ (0.5005π ×10 )  (  + s 0.25 ×10 

For the case C = 200x10-9 F, the loop transmission function becomes 
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3162.28 ⋅π 2


H (s)K (s) =
π 2 + s(1.58 ×10−5 )+ s 2 (1.5079 ×10−13 )+ s 3 (2 ×10−22 )


The phase margin and bode plots of the two cases are shown below. 

The phase margin angle γ is defined as 

γ = 180o + α


where α is the phase angle where the amplitude of the output signal is equal to the amplitude of the input signal.  A 
system is stable implies a positive phase margin value.  

For the capacitance value of 0 F, the phase margin is 31.3510. 
For the case with C = 200 pF = 200x10-12 F the phase margin is -19.2640. The system is unstable. We can 

see that a larger capacitance implies a smaller phase margin. 
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The phase margin is zero when the capacitance is decreased to about 18.44 pF, which is the maximum 
capacitance to be driven stably and the corresponding frequency is 147 MHz.  

Problem 16.6 (10 pts): Noise in a (vastly simplified) capacitive accelerometer 

a).  In general, the force-displacement characteristic for a spring-mass-damper system is described as follows: 

Knowing that the mass of the accelerometer is m=300 ng, and a resonant frequency ωo = 2π× 25000 rad/s, and they 
system is critically damped, we can expressed the system transfer function for position x as, 

x sH s( )  = 
( )  

= 
1 

( )  ms2 + bs + kF s 
1 

= m 
s + (2 b ) s + k 

m m 

In our system, we know that we are in a critically damped situation.  We can there for insert the following 
expression in the generalized transfer function expression. 
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mω0 1 
= =Q for the critically damped case 

b 2 

where ω0 = 
k 
m 

This substitution yields the following simplified relation: 

x sH s( )  = 
( )  

= 2

1 
( )  m +bs + kF s s 

= 
s2 + 2ω0s +ω0

2 

= 
(s +ω0 )

2 

The intrinsic noise due to damping is similar to the noise generated by a resistor, and the spectral density function of 
this noise has the form, 

Sn ( f ) = 4kBTb 
where b=2mωo  for the case of critical damping. 

Though we could solve this problem using the following integral: 

∆f 
22xn = ∫ H j( 2π f ) f  df  S  ( )n 

0 

. 
we can instead approach to the problem by using the fact that the system bandwidth is much smaller than the 
resonant frequency of the accelerometer.  Hence, we can approximate the quasi-static response, and use the 
bandwidth as the noise bandwidth.  The mean square force acting on the mass is, 

f 2 = 4k Tb  f  ∆n B 

So the displacement is, 
f 4k Tb  f  ∆ n B = 5.337 pmx = = n 2k mωo 

which is nearly the same as obtained by performing the integral 

b). The effective capacitance C1 and C2 can be expressed as 
ε0 HL0Csense = 

G0 ± xn r, ms 

ε0 HL0 1 
= ⋅ 

G0 xn r, ms1± 
G0 

1 
= C0 x

1± n r, ms 

G0 

7 

Cite as: Carol Livermore and Joel Voldman, course materi1 als for 6.777J Design and Fabrication of 
Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), 
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

1 
m 

1 
m 



where C is the capacitance at zero displacement, and G0 is the initial gap. We can further simplify this relation by 
0 

linearizing around the initial gap condition using Taylor series expansion where we retain only the first term.  We 
outline such a procedure here: 

f = C0 x	
1

, 
   and ∂

∂ 

f
y 
=

−C

x 
0 

⎞
2 

n rms  ⎛ n rms  1± 
G	 G0 ⎜1± , 

⎟ 
0	 ⎝ G0 ⎠ 
−C	 −C∂f 

= 0 = 0


∂y
G0 G0 
⎛
⎜1± 

0 ⎞
⎟ 

2 G0


⎝ G0 ⎠

The linearized form when retaining only the 1st Taylor series term: 

⎛ ∂f
+ ⎜C ≈ fsense G0 ⎜
⎝ ∂y 

⎞ ⎛ ∂f 
n rms  

G0 ⎠
⎟
⎟ x , = C0 + 

⎝
⎜
⎜ 
∂y 

⎞ ⎛ xn rms  ⎞ 

G0 ⎠
⎟
⎟ x , = C0 

⎝ 
1∓ 

G0 ⎠
⎟n rms  ⎜ 

, 

The effective capacitance due to the fluctuation of position is therefore: 

C ≈ 100 ×10−15 × (1 ± 
5.337 ×10 −12 

)sense 1.3×10 −6 

The effective variation in C1 and C2 due to the fluctuation is 4.105 ×10−19 F . 

To find the relation between Vs and Vx, apply KCL at the node connecting C1 and C2, 

Vs − Vx Vx − (−Vs ) Vx
− − = 0

1 1 1 
sC1 sC2 sCp 

Simplify the equation, we have 
C C−V = 1 2 Vx sC C  + C+1 2 p 

We reasonably assume that with 2.5 V actuation, the nominal capacitances are relatively unchanged.  Hence, the 
effective voltage noise source at the point of Vx is 

C0 
⎛
⎜1+ 

xn rms , ⎞
⎟ − C0 

⎛
⎜1− 

xn rms , ⎞
⎟ 2 

xn rms  , 

⎝ G0 ⎠ ⎝ G0 ⎠ G 
vT = ⋅Vs = 0 ⋅Vs3C0 3 

5.337 ×10−12 

2 ⋅ 
1.3 ×10 −6 

= ⋅ 2.5 
3 

= 6.842×10−6V 

c). The mean square voltage noise on the capacitors in our system is described using equation 16.23 from the text.  
We repeat it here in a slightly altered form. 

v 	 k TR  f  C rms  , = vC1 = vC 2 = vCp  = 4 B ∆ 

In this expression, R represents the resistor that connects to the capacitors and also the thermal reservoir. ∆f is the 
band width of interest.  For the architecture outlined in this problem, we calculate the resistance using the following 
routine: 

LR = ρ 
nA 

100×10−6 m 
= 400×10 −6 ×10−2 Ω⋅ m × 

25× (25 ×10−12 m2 ) 
= 0.64 Ω 
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Pluging in, the root mean square voltage noise on the capacitors is: 

v = v = v = v = 4k TR  f  ∆C rms  , C1 C 2 Cp  B  

= 4 1.38  ×10  −23 J / K ×300  K ×  Ω×  1000  × 0.64  Hz  

= 3.256 ×10−9V 

d). The mean square noise at the two inputs of the operational amplifier can be written using equation 16.19. 

1000 
vA 

2 = vB 
2 = ∫ Sn ( f )df 

fcut −off 

where, from equation 16.32 

2 K f
Sn ( f ) = 4kBT ( )(1+ Fn ) +

3gm WLĈ0 x f


In this expression: 

gm is the transistor transconductance 

Fn is the noise factor (2~5), assuming 5 


K f is a scale factor for the 1/f noise, which is 10-24 V2 F 


WLĈ0 x is the gate-to-channel capacitance and  


Ĉ0 x =
ε 0x 

tox


ε ox  is the permittivity of oxide which is 3.9ε 0


tox is the gate oxide thickness 


Substituting in gives: 

Sn ( f ) = 4 ×1.38×10−23 × 300 × 
2 

−6 × (1+ 5) + 
10−24 

−123× 300 ×10 3.9 ×8.85×1030 × 2×10−12 × f
15×10−9 

= 2.2080 ×10−16 + 
7.2432×10−12 

V 2 / Hz
f 

The mean-square voltage noise 
1000 

vA 
2 = vB 

2 = ∫fcut −off 

Sn ( f )df 

= 
1000

(2.2080 ×10−16 + 
7.2432 ×10−12 

)df∫10 f 
= 3.3649×10−11V 2 

vA,rms =v B,rms = 5.008 ×10−6V 
e). The equivalent circuit is shown below. 
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1I = 
(Vs 1 

1 
() Vv xc −− )vT− 

2I = 
(Vx 

1 
() Vv sT − −− 2 )vc+ 

pI = xV pv 
1 
− 

1sC 2sC psC 
Apply KCL: 

I1 = I 2 + pI 
Substitute in 

sV( xc Vv 
1 

()1 −− Tv )− 
= xV( sT Vv 

1 
() − −− cv )2+ xV 

+ pv 
1 
− 

sC1 sC2 psC 
Simplify the equation, we have 

xV = sV( Tv+ 

p 

sppc 

CCC 
Vv CCv 

++ 

−+− 

21 

11 () Cv− 2 T Cv− 2) 

where Vs  is the signal. Since the noise sources are not correlated, the equivalent mean square noise at Vx is 

2 ⎜ 1 ⎟ 2 2 ⎜ 2 ⎟ 2 2 ⎜ p ⎟ 2Vn,x = 
⎛
⎜
⎝ C1 + C

C 

2 + C p 

⎞
⎟
⎠ 

2

(vT + vc1 ) +
⎛
⎜
⎝ C1 + C

C 

2 + C p 

⎞
⎟
⎠ 

2 

(vT + vc2 )+ ⎛⎜
⎝ C1 + C

C 

2 + C p 

⎞
⎟
⎠ 

2 

v p 

in accordance with the remark at the bottom of p. 434 in the text. 

Using the short method for the op-amp circuit, we have 
V0 − vB = Vx + vA 

V0 = vB + vA + Vx 

The three noise sources are again uncorrelated, the mean square noise at the output is 

Vn 
2
,0 = Vn 

2
,x + vB 

2 + vA 
2 

Substitute in Vn
2
,x and C1 = C2 = C p , we have 

V 2 = 
2 v2 + 

1 v2 + 
1 v2 + 

1 v2 + v2 + v2 
n,0 T c1 c2 cp  B  A9 9 9 9 
2 −6 2  1 −9 2 −6 2= (6.842 ×10 ) + (3.256 ×10 ) + 2× (5.008 ×10 )
9 3 

= 6.0563 10 × −11V 2 

The root mean square of the noise at the output is 
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v = 7.7822 ×10 −6 V , ,  msn o r

The total noise output is seen to be dominant by the thermal noise and the amplifier noise.  These two noise 
sources have same order of magnitude and are three orders of magnitude larger than the capacitive noises.  The 
transfer function of this circuit does not change the proportion of the contribution of the noise sources and hence we 
conclude that the form of the transfer function has no significant affect on the dominant terms of the noise.    
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