6.777J/2.372J Design and Fabrication of Microelectromechanical Devices Spring Term 2007

Massachusetts Institute of Technology
PROBLEM SET 3 (13 pts)
By Brian Taff (with acknowledgement to Feras Eid and Xue'en Yang)
Due: Lecture 9

Problem 9.14 (2 pts): Bending of an AFM Cantilever

For LPCVD stoichiometric silicon nitride, E = 270 GPa.
From the lecture on structures, for a cantilever with the following configuration and loading
the differential equation of beam bending is: $\frac{d^{2} w}{d x^{2}}=-\frac{M}{E I}$

where M is the internal moment at distance $x: \quad M=-F(L-x)$ and I is the moment of inertia of the cross section at the distance x. For a rectangular cross section:

$$
I=b h^{3} / 12
$$

For our case, $h=0.5 \mu \mathrm{~m}$ and b is a function of x due to the triangular shape of the cantilever.

For our geometry:

$$
\frac{b}{L-x}=\frac{a}{L}
$$

Therefore:

$$
I=\frac{a(L-x) h^{3}}{12 L}
$$

and

$$
\frac{d^{2} w}{d x^{2}}=\frac{12 F(L-x) L}{E a(L-x) h^{3}}=\frac{12 F L}{E a h^{3}}
$$

Integrating twice:

$$
w=\frac{6 F L}{E a h^{3}} x^{2}+A x+B
$$

Applying the boundary conditions: $w(x=0)=d w / d x(x=0)=0$, we get: $A=B=0$.

Therefore:

$$
w(x)=\frac{6 F L}{E a h^{3}} x^{2}
$$

Cite as: Carol Livermore and Joel Voldman, course materials for 6.777J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

At the tip ($x=L$), the deflection is:

$$
w(L)=\frac{6 F L^{3}}{E a h^{3}}=55.55 F \quad[w \text { in } m, F \text { in } N]
$$

And the equivalent spring constant is: $\quad k_{e q}=\frac{F}{w(L)}=\frac{E a h^{3}}{6 L^{3}}=0.018 \mathrm{~N} / \mathrm{m}$
For a tip deflection of $2 \mu \mathrm{~m}$:

$$
F=k_{e q} \cdot w(L)=0.018 \cdot 2 \times 10^{-6}=3.6 \times 10^{-8} N
$$

And the maximum stress at the support is: $\quad \sigma_{\max }=\frac{M h}{2 I}=\frac{F(L-x) h 12 L}{2 a h^{3}(L-x)}=\frac{6 F L}{a h^{2}}=4.32 \mathrm{MPa}$

Problem 14.12 (2 pts): Circuit loading

a) Assuming we have an ideal op-amp

$$
\begin{aligned}
& \mathrm{i}^{+}=0 \rightarrow \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{s}} \\
& \mathrm{i}^{-}=0 \rightarrow \mathrm{~V}^{-}=\mathrm{V}_{1}, \mathrm{i}_{1}=\mathrm{i}_{2} \\
& \text { and } \mathrm{V}^{+}=\mathrm{V}^{-} \rightarrow \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{1}
\end{aligned}
$$

Also $\mathrm{V}_{1}=\mathrm{i}_{1} \mathrm{R}_{1}, \mathrm{~V}_{\mathrm{L}}=\mathrm{i}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
Therefore $\mathrm{V}_{\mathrm{L}} / \mathrm{V}_{\mathrm{s}}=1+\mathrm{R}_{2} / \mathrm{R}_{1}$

b) Assuming again we have an ideal op-amp
$\mathrm{i}^{-}=0 \quad \Rightarrow \quad \mathrm{i}_{\mathrm{s}}=\mathrm{i}_{\mathrm{L}}$
and $\quad \mathrm{V}^{+}=\mathrm{V}^{-}=0$
Also $\mathrm{V}^{-}-\mathrm{V}_{\mathrm{L}}=\mathrm{i}_{\mathrm{L}} \mathrm{R}_{1}, \mathrm{~V}_{\mathrm{S}}-\mathrm{V}^{-}=\mathrm{i}_{\mathrm{S}}\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{2}\right)$
Therefore $V_{L} / V_{s}=-R_{1} /\left(R_{s}+R_{2}\right)$
The ratio is negative, hence the name "inverting".

c) The gain G is defined as the ratio of the output voltage to the input voltage, or V_{L} / V_{s}.

For the non-inverting amplifier: $G_{i d e a l}=1+R_{2} / R_{1}=G_{\text {actual }}$ for all values of R_{s}

$$
\mathrm{G}_{\text {actual }} / \mathrm{G}_{\text {ideal }}=1
$$

For the inverting amplifier: $\quad G_{i d e a l}=-R_{1} / R_{2}$

$$
\mathrm{G}_{\text {actual }} / \mathrm{G}_{\text {ideal }}=\mathrm{R}_{2} /\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{2}\right)
$$

Thus for the non-inverting amplifier, the ideal and actual gains are always equal, while for the inverting amplifier, the actual gain approaches the ideal gain only when the sensor impedance approaches zero (assuming both amplifiers are ideal). Clearly, the non-inverting amplifier is less sensitive to changes in R_{s} than the inverting one.

Cite as: Carol Livermore and Joel Voldman, course materials for 6.777J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Problem 9.13 (3pts): Leveraged Bending with Electrostatic Actuation

a) The governing equation for the deflection of a doubly clamped beam under a point load as shown in the figure is,

$$
E I \frac{d^{4} w}{d x^{4}}=-F\langle x-a\rangle^{-1}
$$

where $\langle x-a\rangle^{-1}$ denotes a concentrated load at a. Integrating, we have,

$$
\begin{aligned}
& E I \frac{d^{3} w}{d x^{3}}=-F\langle x-a\rangle^{0}+C_{1} \\
& E I \frac{d^{2} w}{d x^{2}}=-F\langle x-a\rangle^{1}+C_{1} x+C_{2} \\
& E I \frac{d w}{d x}=-\frac{F}{2}\langle x-a\rangle^{2}+\frac{1}{2} C_{1} x^{2}+C_{2} x+C_{3} \\
& E I w=-\frac{F}{6}\langle x-a\rangle^{3}+\frac{1}{6} C_{1} x^{3}+\frac{1}{2} C_{2} x^{2}+C_{3} x+C_{4}
\end{aligned}
$$

Apply the boundary conditions

$$
w(0)=w(L)=w^{\prime}(0)=w^{\prime}(L)=0,
$$

we get,

$$
\begin{aligned}
& C_{1}=\frac{F(L-a)^{2}(L+2 a)}{L^{3}} \\
& C_{2}=\frac{-F(L-a)^{2} a}{L^{2}} \\
& C_{3}=C_{4}=0
\end{aligned}
$$

Hence, the center deflection is,

$$
w\left(\frac{L}{2}\right)=\frac{F a^{2}(4 a-3 L)}{48 E I}
$$

If we next examine the effect of the point load acting at the right hand side of the beam (acting alone as if the load at "a" had been removed), we get a similar setup.

$$
\begin{aligned}
& E I \frac{d^{4} w}{d x^{4}}=-F\langle x-(L-b)\rangle^{-1} \\
& \left.E I \frac{d^{3} w}{d x^{3}}=-F<x-(L-b)\right\rangle^{0}+C_{1} \\
& \left.E I \frac{d^{2} w}{d x^{2}}=-F<x-(L-b)\right\rangle^{1}+C_{1} x+C_{2} \\
& \left.E I \frac{d w}{d x}=-\frac{F}{2}<x-(L-b)\right\rangle^{2}+\frac{1}{2} C_{1} x^{2}+C_{2} x+C_{3} \\
& E I w=-\frac{F}{6}<x-(L-b)>^{3}+\frac{1}{6} C_{1} x^{3}+\frac{1}{2} C_{2} x^{2}+C_{3} x+C_{4}
\end{aligned}
$$

Applying the boundary conditions

$$
w(0)=w(L)=w^{\prime}(0)=w^{\prime}(L)=0,
$$

we get,

Cite as: Carol Livermore and Joel Voldman, course materials for 6.777J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$
\begin{aligned}
& C_{1}=\frac{F b^{2}(3 L-2 b)}{L^{3}} \\
& C_{2}=\frac{F b^{2}(b-L)}{L^{2}} \\
& C_{3}=C_{4}=0
\end{aligned}
$$

In this case, the center deflection is:

$$
w\left(\frac{L}{2}\right)=\frac{F b^{2}(4 b-3 L)}{48 E I}
$$

Applying superposition to the beam, we can obtain the center deflection due to both loads to be,

$$
\delta=\frac{F\left[a^{2}(4 a-3 L)+b^{2}(4 b-3 L)\right]}{48 E I}
$$

Problem 5.9 (2 pts): Circuit representation of a lumped mechanical system

In the $e \rightarrow V$ convention, the flows are the time derivatives of the displacements x_{i} of the different bodies, and effort is the external force. Since k_{1} and b_{1} share the same displacement, and hence, the same flow, they are in series. The same holds for k_{2} and m_{2} and also for k_{3} and m_{1}. By observation, the net flow through b_{1} is $\left(\dot{x}_{2}-\dot{x}_{1}\right)$. Hence, the equivalent circuit can be represented as shown in Figure.

Apply KVL for the left loop, we have

$$
\begin{align*}
& m_{2} s^{2} x_{2}+k_{2} x_{2}+\left(k_{1} / s+b_{1}\right)\left(x_{2} s-x_{1} s\right)=F \\
& \Rightarrow-\left(b_{1} s+k_{1}\right) x_{1}+\left(m_{2} s^{2}+b_{1} s+k_{1}+k_{2}\right) x_{2}=F \tag{1}
\end{align*}
$$

Cite as: Carol Livermore and Joel Voldman, course materials for 6.777J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Apply KVL for the right loop, we have

$$
\begin{aligned}
& m_{1} s^{2} x_{1}+k_{3} x_{1}+\left(k_{1} / s+b_{1}\right)\left(x_{1} s-x_{2} s\right)=0 \\
& \Rightarrow\left(m_{1} s^{2}+b_{1} s+k_{1}+k_{3}\right) x_{1}-\left(b_{1} s+k_{1}\right) x_{2}=0 \\
& \Rightarrow x_{2}=\frac{m_{1} s^{2}+b_{1} s+k_{1}+k_{3}}{b_{1} s+k_{1}} x_{1}
\end{aligned}
$$

Substitute into (1), we have,

$$
\frac{x_{1}(s)}{F(s)}=\frac{b_{1} s+k_{1}}{-\left(b_{1} s+k_{1}\right)^{2}+\left(m_{1} s^{2}+b_{1} s+k_{1}+k_{3}\right)\left(m_{2} s^{2}+b_{1} s+k_{1}+k_{2}\right)}
$$

Cite as: Carol Livermore and J oel Voldman, course materials for 6.777J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

