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Lecture 8: Local Behavior at Eqilibria1 

This lecture presents results which describe local behavior of autonomous systems in terms 
of Taylor series expansions of system equations in a neigborhood of an equilibrium. 

8.1 First order conditions 

This section describes the relation between eigenvalues of a Jacobian a�(x̄0) and behavior 
of ODE 

ẋ(t) = a(x(t)) (8.1) 

or a difference equation 
x(t + 1) = a(x(t)) (8.2) 

in a neigborhood of equilibrium x̄0. 
In the statements below, it is assumed that a : X ≥� Rn is a continuous function 

defined on an open subset X � Rn . It is further assumed that x̄0 ⊂ X, and there exists 
an n-by-n matrix A such that 

|a(¯ x0) − Aλ|x0 + λ) − a(¯
� 0 as |λ| � 0. (8.3)

|λ| 

If derivatives dak /dxi of each component ak of a with respect to each cpomponent xi 

of x exist at x̄0, A is the matrix with coefficients dak /dxi, i.e. the Jacobian of the system. 
However, differentiability at a single point x̄0 does not guarantee that (8.3) holds. On the 
other hand, (8.3) follows from continuous differentiability of a in a neigborhood of x̄0. 

1Version of October 3, 2003 
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Example 8.1 Function a : R2 ≥� R2, defined by 
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2
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for	 x ≤ x1 and ¯¯ = 0, and by a(0) = 0, is differentiable with respect to ¯ x2 at every point 
x̄ ⊂ R2, and its Jacobian a�(0) = A equals minus identity matrix. However, condition 
(8.3) is not satisfied (note that a�(¯	 x = 0). x) is not continuous at ¯

8.1.1 The continuous time case 

Let us call an equilibrium x̄0 of (8.1) exponentially stable if there exist positive real num
bers σ, r, C such that every solution x : [0, T ] ≥� X with |x(0) − x̄0| < σ satisfies 

x0| ∀ Ce −rt|x(0) − ¯|x(t) − ¯	 x0| � t → 0. 

The following theorem can be attributed directly to Lyapunov. 

Theorem 8.1 Assume that a(x̄0) = 0 and condition (8.3) is satisfied. Then 

(a) if A = a�(x̄0) is a Hurwitz matrix (i.e. if all eigenvalues of A have negative real 
part) then x̄0 is a (locally) exponentially stable equilibrium of (8.1); 

x0)	 has an eigenvalue with a non-negative real part then ¯(b) if	 A = a�(¯ x0 is not an 
exponentially stable equilibrium of (8.1); 

x0) has an eigenvalue with a positive real part then ¯(c) if	 A = a�(¯ x0 is not a stable 
equilibrium of (8.1). 

Note that Theorem 8.1 does not cover all possible cases: if A is not a Hurwitz matrix 
and does not have eigenvalues with positive real part then the statement says very little, 
and for a good reason: the equilibrium may turn out to be asymptotically stable or 
unstable. Note also that the equilibrium x̄ = 0 from Example 8.1 (where a is differentiable 
but does not satisfy (8.3)) is not stable, despite the fact that A = −I has all eigenvalues 
at −1. 

Example 8.2 The equilibrium x̄ = 0 of the ODE 

ẋ(t) = �x(t) + �x(t)3 

is asympotically stable when � < 0 (this is due to Theorem 8.1), but also when � = 0 and 
� < 0. The equilibrium is not stable when � > 0 (due to Theorem 8.1), but also when 
� = 0 and � > 0. In addition, the equilibrium is stable but not asymptotically stable 
when � = � = 0. 
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8.1.2 Proof of Theorem 8.1 

The proof of (a) can be viewed as an excercise in “storage function construction” outlined 
in the previous lecture. Indeed, assuming, for simplicity, that x̄0 = 0, (8.1) can be re
written as 

ẋ(t) = Ax(t) + w(t), w(t) = a(x(t)) − Ax(t). 

Here the linear part has standard storage functions 

VLTI(¯ x �P ̄x) = ¯ x, P = P � 

with supply rates 
αLTI(¯ w) = 2¯�P (A¯ ¯x, ¯ x x + w). 

In addition, due to (8.3), for every λ > 0 there exists σ > 0 such that the nonlinear 
component w(t) satisfies the sector constraint 

2αNL(x(t), w(t)) = λ|x(t)|2 − |w(t)| → 0, 

as long as |x(t)| < σ. Since A is a Hurwitx matrix, P = P � can be chosen positive definite 
and such that 

PA + A�P = −I. 

Then 
α(¯ w) = αLTI(¯ w) + δαNL(¯ w)x, ¯ x, ¯ x, ¯

x|2 + 2δ ̄ w − δ | ¯ ¯ ¯ w| − δ |w|2 ,= (δλ − 1)|¯ x �P ¯ w|2 ∀ (δλ − 1)|x|2 − 2∈P∈ · |x| · | ¯ ¯

where ∈P∈ is the largest singular value of P , is a supply rate for the storage function 
V = VLTI for every constant δ → 0. When δ = 16∈P∈ and λ = 0.25/δ , we have 

x, ¯ xα(¯ w) ∀ −0.5|¯|2 , 

which proves that, for |x(t)| < σ, the inequality 

1 
V (x(t)) ∀ −0.5|x(t)|2 ∀ − V (x(t)). 

2∈P−1∈ 

Hence 
V (x(t)) ∀ e −dtV (x(0)) � t → 0, 

where d = 1/2∈P−1∈, as long as |x(t)| < σ. Since 

−1∈P∈ · |x(t)| → V (x(t)) → ∈P−1∈ · |x(t)|, 

this implies (a). 
The proofs of (b) and (c) are more involved, based on showing that solutions which 

start at x̄0 + λv, where v is an eigenvector of A corresponding to an eigenvalue with a non
negative (strictly positive) real part, cannot converge to x̄0 quickly enough (respectively, 
diverge from x̄0). 
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To prove (b), take a real number d ⊂ (0, r/2) such that no two eigenvalues of A sum 
up to −2d. Then P = P � be the unique solution of the Lyapunov equation 

P (A + dI) + (A� + dI)P = −I. 

Note that P is non-singular: otherwise, if Pv = 0 for some v ≤= 0, it follows that 

� �(A�−|v|2 = v (P (A + dI) + (A� + dI)P )v = (Pv)�(A + dI)v + v + dI)(Pv) = 0. 

In addition, P = P � is not positive semidefinite: since, by assumption, A + dI has an 
eigenvector u ≤= 0 which corresponds to an eigenvalue � with a positive real part, we have 

−|u|2 = −2Re(�)u Pu, 

hence u�Pu < 0. 
Let σ > 0 be small enough so that 

2¯ ¯ 2 ¯x �Pw ∀ 0.5|x| for |w| ∀ σ|x|. 

By assumption, there exists λ > 0 such that 

x) − A¯ ¯ ¯|a(¯ x| ∀ σ|x| for |x| ∀ λ. 

Then 

d 
(e 2dt 2dtx(t)�Px(t)) = e (2dx(t)�Px(t) + 2x(t)�PAx(t) + 2x(t)�P (a(x(t)) − Ax(t)))

dt

2∀ −0.5e 2dt|x(t)|

as long as x(t) is a solution of (8.1) and |x(t)| ∀ λ. In particular, this means that if 
x(0)�Px(0) ∀ −R < 0 and |x(0)| ∀ λ then e2dtx(t)�Px(t) ∀ −R for as long as |x(t)| ∀ λ, 
which contradicts exponential stability with rate r > 2d. 

The proof of (c) is similar to that of (a). 

8.1.3 The discrete time case 

The results for the discrete time case are similar to Theorem 8.1, with the real parts of 
the eigenvalues being replaced by the difference between their absolute values and 1. 

Let us call an equilibrium x̄0 of (8.2) exponentially stable if there exist positive real 
numbers σ, r, C such that every solution x : [0, T ] ≥� X with |x(0) − x̄0| < σ satisfies 

x0| ∀ Ce −rt|x(0) − ¯|x(t) − ¯ x0| � t = 0, 1, 2, . . . . 

Theorem 8.2 Assume that a(x̄0) = 0 and condition (8.3) is satisfied. Then 
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(a) if A = a�(¯0) is a Schur matrix (i.e. if all eigenvalues of A have absolute value less x
than one) then ¯0 is a (locally) exponentially stable equilibrium of (8.2); x

(b) if A = a�(¯0) has an eigenvalue with absolute value greater than 1 then ¯0 is not anx x
exponentially stable equilibrium of (8.2); 

(c) if A = a�(¯0) has an eigenvalue with absolute value strictly larger than 1 then ¯x x0 is 
not a stable equilibrium of (8.2). 

8.2 Higher order conditions 

When the Jacobian A = a�(¯ x0 has no eigenvalues x0) of (8.1) evaluated at the equilibrium ¯
with positive real part, but has some eigenvalues on the imaginary axis, local stability 
analysis becomes much more complicated. Based on the proof of Theorem 8.1, it is natural 
to expect that system states corresponding to strictly stable eigenvalues will behave in 
a predictably stable fashion, and hence the behavior of system states corresponding to 
the eigenvalues on the imaginary axis will determine local stability or instability of the 
equilibrium. 

8.2.1 A Center Manifold Theorem 

In this subsection we assume for simplicity that x̄0 = 0 is the studied equilibrium of (8.1), 
i.e. a(0) = 0. Assume also that a is k times continuously differentiable in a neigborhood 
of x̄0 = 0, where k → 1, and that A = a�(0) has no eigenvalues with positive real part, but 
has eigenvalues on the imaginary axis, as well as in the open left half plane Re(s) < 0. 
Then a linear change of coordinates brings A into a block-diagonal form 

Ac 0 
A = 

0 As 
, 

where As is a Hurwitz matrix, and all eigenvalues of Ac have zero real part. 

Theorem 8.3 Let a : Rn ≥� Rn be k → 2 times continuously differentiable in a neigbor
hood of x̄0 = 0. Assume that a(0) = 0 and 

Ac 0 
a (0) = A = 

0 As 
, 

where As is a Hurwitz p-by-p matrix, and all eigenvalues of the q-by-q matrix Ac have 
zero real part. Then 

(a) there exists σ > 0 and a function h : Rq ≥� Rp , k − 1 times continuously differ
entiable in a neigborhood of the origin, such that h(0) = 0, h�(0) = 0, and every 
solution x(t) = [xc(t); xs(t)] of (8.1) with xs(0) = h(xc(0)) and with |xc(0)| < σ 
satisfies xs(t) = h(x0(t)) for as long as |xc(t)| < σ; 



6 

(b) for every function h from (a), the equilibrium x̄0 = 0 of (8.1) is locally stable 
(asymptotically stable) [unstable] if and only if the equilibrium x̄c = 0 of the ODE 

dotxc(t) = a([xc(t); h(xc(t))]) (8.4) 

is locally stable (asymptotically stable) [unstable]; 

(c) if the equilibrium x̄c = 0 of (8.4) is stable then there exist constants r > 0, β > 0 
such that for every solution x = x(t) of (8.1) with |x(0)| < r there exists a solution 
xc = xc(t) of (8.4) such that 

lim e �t|x(t) − [xc(t); h(xc(t))]| = 0. 
t�� 

The set of points

x = [xc; h(¯ x
Mc = {¯ ¯ xc)] : |¯c| < σ}, 

where σ > 0 is small enough, is called the central manifold of (8.1). Theorem 8.3, called 
frequently the center manifold theorem, allows one to reduce the dimension of the system 
to be analyzed from n to q, as long as the function h defining the central manifold can be 
calculated exactly or to a sufficient degree of accuracy to judge local stability of (8.4). 

Example 8.3 This example is taken from Sastry, p. 312. Consider system 

ẋ1(t) = −x1(t) + kx2(t)
2 , 

ẋ2(t) = x1(t)x2(t), 

where k is a real parameter. In this case n = 2, p = q = 1, Ac = 0, As = −1, and k 
can be arbitrarily large. According to Theorem 8.3, there exists a k times differentiable 
function h : R ≥� R such that x1 = h(x2) is an invariant manifold of the ODE (at least, 
in a neigborhood of the origin). Hence 

ky 2 = h(y) + ḣ(y)h(y)y 

for all sufficiently small y. For the 4th order Taylor series expansion 

3 4 ˙ 4h(y) = h2y 2 + h3y + h4y 4 + o(y ), h(y) = 2h2y + 3h3y 2 + 4h4y + o(y 3), 

comparing the coefficients on both sides of the ODE for h yields h2 = k, h3 = 0, h4 = 
−2k2 . Hence the center manifols ODE has the form 

ẋc(t) = kxc(t)
3 + o(xc(t)

3), 

which means stability for k < 0 and instability for k > 0. 


