
Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science 

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS 

by A. Megretski 

Lecture 4: Analysis Based On Continuity 1 

This lecture presents several techniques of qualitative systems analysis based on what is 
frequently called topological arguments, i.e. on the arguments relying on continuity of 
functions involved. 

4.1 Analysis using general topology arguments 

This section covers results which do not rely specifically on the shape of the state space, 
and thus remain valid for very general classes of systems. We will start by proving gener
alizations of theorems from the previous lecture to the case of discrete-time autonomous 
systems. 

4.1.1 Attractor of an asymptotically stable equilibrium 

Consider an autonomous time invariant discrete time system governed by equation 

x(t + 1) = f(x(t)), x(t) ⊂ X, t = 0, 1, 2, . . . , (4.1) 

where X is a given subset of Rn , f : X ∞� X is a given function. Remember that f 
is called continuous if f(xk ) � f(x�) as k � → whenever xk , x� ⊂ X are such that 
xk � x� as k � →). In particular, this means that every function defined on a finite set 
X is continuous. 

One important source of discrete time models is discretization of differential equations. 
RnAssume that function a : ∞� Rn is such that solutions of the ODE 

ẋ(t) = a(x(t)), (4.2) 
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with x(0) = x exist and are unique on the time interval t ⊂ [0, 1] for all ¯¯ x ⊂ Rn . Then 
discrete time system (4.1) with f(¯) = x(1, ¯) describes the evolution of continuous time x x
system (4.2) at discrete time samples. In particular, if a is continuous then so is f . 

Let us call a point in the closure of X locally attractive for system (4.1) if there exists 
d > 0 such that x(t) � ¯ ¯x0 as t � → for every x = x(t) satisfying (4.1) with |x(0)−x0| < d. 
Note that locally attractive points are not necessarily equilibria, and, even if they are, 
they are not necessarily asymptotically stable equilibria. 

x0 ⊂ Rn the set A = A(¯ x ⊂ X in (4.1) which define a For ¯ x0) of all initial conditions ¯
solution x(t) converging to ¯ xx0 as t � → is called the attractor of ¯0. 

Theorem 4.1 If f is continuous and x̄0 is locally attractive for (4.1) then the attractor 
A = A(x̄0) is a (relatively) open subset of X, and its boundary d(A) (in X) is f -invariant, 
i.e. f(¯) ⊂ d(A) whenever ¯x x ⊂ d(A). 

Remember that a subset Y � X � Rn is called relatively open in X if for every y ⊂ Y 
there exists r > 0 such that all x ⊂ X satisfying |x− y| < r belong to Y . A boundary of a 
subset Y � X � Rn in X is he set of all x ⊂ X such that for every r > 0 there exist y ⊂ Y 
and z ⊂ X/Y such that |y − x| < r and z − x| < r. For example, the half-open interval 
Y = (0, 1] is a relatively closed subset of X = (0, 2), and its boundary in X consists of a 
single point x = 1. 

Example 4.1 Assume system (4.1), defined on X = Rn by a continuous function 
f : Rn ∞� Rn, is such that all solutions with |x(0)| < 1 converge to zero as t � →, 
and all solutions with |x(0)| > 100 converge to infinity as t � →. Then, according to 
Theorem 4.1, the boundary of the attractor A = A(0) is a non-empty f -invariant set. By 

¯ ¯assumptions, 1 ∀ |x| ∀ 100 for all x ⊂ A(0). Hence we can conclude that there exist 
solutions of (4.1) which satisfy the constraints 1 ∀ |x(t)| ∀ 100 for all t. 

Example 4.2 For system (4.1), defined on X = Rn by a continuous function f : Rn ∞� 
Rn, it is possible to have every trajectory to converge to one of two equilibria. However, 
it is not possible for both equilibria to be locally attractive. Otherwise, according to The
orem 4.1, Rn would be represented as a union of two disjoint open sets, which contradicts 
the notion of connectedness of Rn . 

4.1.2 Proof of Theorem 4.1 

According to the definition of local attractiveness, there exists d > 0 such that x(t) � x̄0 

as t � → for every x = x(t) satisfying (4.1) with |x(0) − x̄0| < d. Take an arbitrary 
x1 ⊂ A(¯ x1. Then x1(t) � ¯0 as¯ x0). Let x1 = x1(t) be the solution of (4.1) with x(0) = ¯ x
t � →, and hence |x1(t1)| < d/2 for a sufficiently large t1. Since f is continuous, x(t) is a 
continuous function of x(0) for every fixed t ⊂ {0, 1, 2, . . . }. Hence there exists � > 0 such 

x xthat |x(t1) − x1(t1)| < d/2 whenever |x(0) − ¯1| < �. Since this implies |x(t1) − ¯0| < d, 
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we have ¯ x x ⊂ X such that |x − ¯1| < �, which proves that A = A(¯0)x ⊂ A(¯0) for every ¯ ¯ x x
is open. 

To show that d(A) is f -invariant, note first that A is itself f -invariant. Now take an 
arbitrary x ⊂ d(A). By the definition of the boundary, there exists a sequence ¯¯ xk ⊂ A 

x xk ) converges to f(¯converging to ¯. Hence, by the continuity of f , the sequence f(¯ x). If 
f(¯) ≤⊂ A, this implies f(¯x x) ⊂ d(A). Let us show that the opposite is impossible. Indeed, 
if f(¯) ⊂ A then, since A is proven open, there exists � > 0 such that z ⊂ A for every x
z ⊂ X such that |z − f(¯)| < �. Since f is continuous, there exists � > 0 such that x
|f(y) − f(¯ xx)| < � whenever y ⊂ X is such that |y − ¯| < �. Hence f(y) ⊂ A whenever 

x|y − ¯| < �. Since, by the definition of attractor, f(y) ⊂ A imlies y ⊂ A, y ⊂ A whenever 
x| < �, which contradicts the assumption that ¯|y − ¯ x ⊂ d(A). 

4.1.3 Limit points of planar trajectories 

For a given solution x = x(t) of (4.2), the set lim(x) � Rn of all possible limits x(tk ) � x̃ 
as k � →, where {tk } converges to infinity, is called the limit set of x. 

Theorem 4.2 Assume that a : Rn ∞� Rn is a locally Lipschitz function. If x : [0,→) ∞� 
Rn is a solution of (4.2) then the set lim(x) of its limit points is a closed subset of Rn , 
and every solution of (4.2) with initial conditions in lim(x) lies completely in lim(x). 

x xq � ¯ asProof First, if tk,q � → and x(tk,q , x(0)) � ¯q as k � → for every q, and ¯ x� 

q � → then one can select q = q(k) such that tk,q(k) � → and x(tk,q(k), x(0) � ¯ asx� 

k � →. This proves the closedness (continuity of solutions was not used yet). 
Second, by assumption 

x̄0 = lim x(tk , x(0)). 
k�� 

Hence, by the continuous dependence of solutions on initial conditions, 

x(t, x̄0) = lim x(t, x(tk , x(0))) = lim x(t + tk , x(0)). 
k�� k�� 

In general, limit sets of ODE solutions can be very complicated. However, in the case 
when n = 2, a relatively simple classification exists. 

Theorem 4.3 Assume that a : R2 ∞� R2 is a locally Lipschitz function. Let x0 : 
[0,→) ∞� R2 be a solution of (4.2). Then one of the following is true: 

(a) |x0(t)| � → as t � →; 

(b) there exists T > 0 and a non-constant solution xp : (−→, +→) ∞� R2 such that 
xp(t + T ) = xp(t) for all t, and the set of limit points of x is the trajectory (the 
range) of xp; 
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(c) the limit set is a union of trajectories of maximal solutions x : (t1, t2) ∞� R2 of 
(4.2), each of which has a limit (possibly infinite) as t � t1 or t � t2. 

The proof of Theorem 4.3 is based on the more specific topological arguments, to be 
discussed in the next section. 

4.2 Map index in system analysis 

The notion of index of a continuous function is a remarkably powerful tool for proving 
existence of mathematical objects with certain properties, and, as such, is very useful in 
qualitative system analysis. 

4.2.1 Definition and fundamental properties of index 

For n = 1, 2, . . . let 
Sn = {x ⊂ Rn+1 : |x| = 1} 

denote the unit sphere in Rn+1 . Note the use of n, not n + 1, in the S-notation: it 
indicates that locally the sphere in Rn+1 looks like Rn . There exists a way to define the 
index ind(F ) of every continuous map F : Sn ∞� Sn in such a way that the following 
conditions will be satisfied: 

(a) if H : Sn × [0, 1] ∞� Sn is continuous then 

ind(H(·, 0)) = ind(H(·, 1)) 

(such maps H is called a homotopy between H(·, 0) and H(·, 1)); 

(b) if the map F̂ : Rn+1 ∞� Rn+1 defined by 

F̂ (z) = |z|F (z/|z|) 

is continuously differentiable in a neigborhood of Sn then 

ind(F ) = det(Jx(F̂ ))dm(x), 
x�Sn 

where Jx(F̂ ) is the Jacobian of F̂ at x, and m(x) is the normalized Lebesque measure 
on Sn (i.e. m is invariant with respect to unitary coordinate transformations, and 
the total measure of Sn equals 1). 

Once it is proven that the integral in (b) is always an integer (uses standard vol-
ume/surface integration relations), it is easy to see that conditions (a),(b) define ind(F ) 
correctly and uniquelly. For n = 1, the index of a continuous map F : S1 ∞� S1 turns 
out to be simply the winding number of F , i.e. the number of rotations around zero the 
trajectory of F makes. 

It is also easy to see that ind(FI ) = 1 for the identity map FI (x) = x,and ind(Fc) = 0 
for every constant map Fc(x) = x0 = const. 
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4.2.2 The Brower’s fixed point theorem 

One of the classical mathematical results that follow from the very existence of the index 
function is the famous Brower’s fixed point theorem, which states that for every continuous 
function G : Bn ∞� Bn, where 

Bn = {x ⊂ Rn+1 : |x| ∀ 1}, 

equation F (x) = x has at least one solution. 
The statement is obvious (though still very useful) when n = 1. Let us prove it for 

ˆn > 1, starting with assume the contrary. Then the map G : Bn ∞� Bn which maps 
x ⊂ Bn to the point of Sn−1 which is the (unique) intersection of the open ray starting 
from G(x) and passing through x with Sn−1 . Then H : Sn−1 × [0, 1] ∞� Sn−1 defined by 

H(x, t) = Ĝ(tx) 

is a homotopy between the identity map H(·, 1) and the constant map H(·, 0). Due to 
existence of the index function, such a homotopy does not exist, which proves the theorem. 

4.2.3 Existence of periodic solutions 

Let a : Rn × R ∞� Rn be locally Lipschitz and T -periodic with respect to the second 
argument, i.e. 

x, t + T ) = a(¯a(¯ x, t) � x, t 

where T > 0 is a given number. Assume that solutions of the ODE 

ẋ(t) = a(x(t), t) (4.3) 

with initial conditions x(0) ⊂ Bn remain in Bn for all times. Then (4.3) has a T -periodic 
solution x = x(t) = x(t + T ) for all t ⊂ R. 

x ∞� x(T, 0, ¯Indeed, the map ¯ x) is a continuous function G : Bn ∞� Bn . The solution 
x = G(¯of ¯ x) defines the initial conditions for the periodic trajectory. 


