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Lecture 3: Continuous Dependence On Parameters1 

Arguments based on continuity of functions are common in dynamical system analysis. 
They rarely apply to quantitative statements, instead being used mostly for proofs of 
existence of certain objects (equilibria, open or closed invariant set, etc.) Alternatively, 
continuity arguments can be used to show that certain qualitative conditions cannot be 
satisfied for a class of systems. 

3.1 Uniqueness Of Solutions 

In this section our main objective is to establish sufficient conditions under which solutions 
of ODE with given initial conditions are unique. 

3.1.1 A counterexample 

Continuity of the function a : Rn ∈� Rn on the right side of ODE 

ẋ(t) = a(x(t)), x(t0) = x̄0 (3.1) 

does not guarantee uniqueness of solutions. 

Example 3.1 The ODE 
ẋ(t) = 3|x(t)|2/3 , x(0) = 0 

has solutions x(t) ≥ 0 and x(t) ≥ t3 (actually, there are infinitely many solutions in this 
case). 

1Version of September 12, 2003 
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3.1.2 A general uniqueness theorem 

The key issue for uniqueness of solutions turns out to be the maximal slope of a = a(x): 
to guarantee uniqueness on time interval T = [t0, tf ], it is sufficient to require existence 
of a constant M such that 

|a(¯ x2)| ∃ M |x1 − ¯x1) − a(¯ ¯ x2|


x1, ¯
for all ¯ x2 from a neigborhood of a solution x : [t0, tf ] ∈� Rn of (3.1). The proof of both 
existence and uniqueness is so simple in this case that we will formulate the statement 
for a much more general class of integral equations. 

Theorem 3.1 Let X be a subset of Rn containing a ball 

x0) = {¯ x − ¯Br (¯ x ≤ Rn : |¯ x0| ∃ r} 

of radius r > 0, and let t1 > t0 be real numbers. Assume that function a : X × [t0, t1] × 
[t0, t1] ∈� Rn is such that there exist constants M,K satisfying 

|a(x̄1, �, t) − a(x̄2, �, t)| ∃ K|x̄1 − x̄2| � x̄1, x̄2 ≤ Br (x̄0), t0 ∃ � ∃ t ∃ t1, (3.2) 

and 
|a(x̄, �, t)| ∃ M � x̄ ≤ Br (x̄0), t0 ∃ � ∃ t ∃ t1. (3.3) 

Then, for a sufficiently small tf > t0, there exists unique function x : [t0, tf ] ∈� X 
satisfying 


 t 

x(t) = x̄0 + a(x(�), �, t)d� � t ≤ [t0, tf ]. (3.4) 
t0 

A proof of the theorem is given in the next section. When a does not depend on the 
third argument, we have the standard ODE case 

ẋ(t) = a(x(t), t). 

In general, Theorem 3.1 covers a variety of nonlinear systems with an infinite dimensional 
state space, such as feedback interconnections of convolution operators and memoryless 
nonlinear transformations. For example, to prove well-posedness of a feedback system in 
which the forward loop is an LTI system with input v, output w, and transfer function 

e−s − 1 
G(s) = , 

s 

and the feedback loop is defined by v(t) = sin(w(t)), one can apply Theorem 3.1 with 

sin(x̄) + h(t), t − 1 ∃ � ∃ t, 
a(x̄, �, t) = 

h(t), otherwise, 

where h = h(t) is a given continuous function depending on the initial conditions.
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3.1.3 Proof of Theorem 3.1. 

First prove existence. Choose tf > t1 such that tf − t0 ∃ r/M and tf − t0 ∃ 1/(2K). 
Define functions xk : [t0, tf ] ∈� X by 


 t 

x0, xk+1(t) = ¯x0(t) ≥ ¯ x0 + a(xk (�), �, t)d�. 
t0 

By (3.3) and by tf − t0 ∃ r/M we have xk (t) ≤ Br (x̄0) for all t ≤ [t0, tf ]. Hence by (3.2) 
and by tf − t0 ∃ 1/(2K) we have 


 t 

|xk+1(t) − xk (t)| ∃ |a(xk (�), �, t) − a(xk−1(�), �, t)|d� 
t0 


 t 

∃ K|xk (�) − xk−1(�)|d� 
t0 

∃ 0.5 max {|xk (t) − xk−1(t)|}. 
t�[t0,tf ] 

Therefore one can conclude that 

max {|xk+1(t) − xk (t)|} ∃ 0.5 max {|xk (t) − xk−1(t)|}. 
t�[t0,tf ] t�[t0,tf ] 

Hence xk (t) converges exponentially to a limit x(t) which, due to continuity of a with 
respoect to the first argument, is the desired solution of (3.4). 

Now let us prove uniqueness. Note that, due to tf − t0 ∃ r/M , all solutions of (3.4) 
must satisfy x(t) ≤ Dr (x̄0) for t ≤ [t0, tf ]. If xa and xb are two such solutions then 


 t 

|xa(t) − xb(t)| ∃ |a(xa(�), �, t) − a(xb(�), �, t)|d� 
t0 


 t 

∃ K|xa(�) − xb(�)|d� 
t0 

∃ 0.5 max {|xa(t) − xb(t)|}, 
t�[t0,tf ] 

which immediately implies 

max {|xa(t) − xb(t)|} = 0. 
t�[t0 ,tf ] 

The proof is complete now. Note that the same proof applies when (3.2),(3.3) are 
replaced by the weaker conditions 

x1, �, t) − a(¯ x1 − ¯ x1, ¯ x0), t0 ∃ � ∃ t ∃ t1,|a(¯ x2, �, t)| ∃ K(�)|¯ x2| � ¯ x2 ≤ Br (¯

and 
x, �, t)| ∃ m(t) � ¯ x0), t0 ∃ � ∃ t ∃ t1,|a(¯ x ≤ Br (¯

where the functions K(·) and M(·) are integrable over [t0, t1]. 
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3.2 Continuous Dependence On Parameters 

In this section our main objective is to establish sufficient conditions under which solutions 
of ODE depend continuously on initial conditions and other parameters. 

Consider the parameterized integral equation 


 t 

x(t, q) = x̄0(q) + a(x(�, q), �, t, q)d�, t ≤ [t0, t1], (3.5) 
t0 

where q ≤ R is a parameter. For every fixed value of q integral equation (3.5) has the 
form of (3.4). 

Theorem 3.2 Let x0 : [t0, tf ] ∈� Rn be a solution of (3.5) with q = q0. For some d > 0 
let 

Xd = {¯ ¯x ≤ Rn : � t ≤ [t0, tf ] : |x − x 0(t)| < d} 

be the d-neigborhood of the solution. Assume that 

(a) there exists K ≤ R such that 

x1, �, t, q)−a(¯ ¯ ¯ x1, ¯|a(¯ x2, �, t, q)| ∃ K|x1−x2| � ¯ x2 ≤ Xd, t0 ∃ � ∃ t ∃ tf , q ≤ (q0−d, q0+d); 
(3.6) 

(b) there exists K ≤ R such that 

x, �, t, q)| ∃ M � ¯|a(¯ x ≤ Xd, t0 ∃ � ∃ t ∃ tf , q ≤ (q0 − d, q0 + d); (3.7) 

(c) for every � > 0 there exists � > 0 such that 

|x0(q1) − ¯¯ x0(q2)| ∃ � � q1, q2 ≤ (q0 − d, q0 + d) : |q1 − q2| < �, 

|a(¯ x, �, t, q2)| ∃ � � q1, q2 ≤ (q0 − d, q0 + d) : |q1 − q2| < �, ¯x, �, t, q1) − a(¯ x ≤ Xd . 

Then there exists d1 ≤ (0, d) such that the solution x(t, q) of (3.5) is continuous on 

{(t, q)} = [t0, tf ] × (q0 − d1, q0 + d1). 

Condition (a) of Theorem 3.2 is the familiar Lipschitz continuity requirement of the 
dependence of a = a(x, �, t, q) on x in a neigborhood of the trajectory of x0 . Condition 
(b) simply bounds a uniformly. Finally, condition (c) means continuous dependence of 
equations and initial conditions on parameter q. 

The proof of Theorem 3.2 is similar to that of Theorem 3.1. 
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3.3 Implications of continuous dependence on parameters 

This section contains some examples showing how the general continuous dependence 
of solutions on parameters allows one to derive qualitative statements about nonlinear 
systems. 

3.3.1 Differential flow 

Consider a time-invariant autonomous ODE 

ẋ(t) = a(x(t)), (3.8) 

where a : Rn ∈� Rm is satisfies the Lipschitz constraint 

|a(¯ x2)| ∃ M |x1 − ¯x1) − a(¯ ¯ x2| (3.9) 

on every bounded subset of Rn . According to Theorem 3.1, this implies existence and 
uniqueness of a maximal solution x : (t−, t+) ∈� Rn of (3.8) subject to given initial 
conditions x(t0) = x̄0 (by this definition, t− < t0 < t+, and it is possible that t− = −⊂ 
and/or t+ = ⊂). To specify the dependence of this solution on the initial conditions, 
we will write x(t) = x(t, t0, x̄0). Due to the time-invariance of (3.8), this notation can 
be further simplified to x(t) = x(t − t0, ¯ x) means “the value x(t) of the x0), where x(t, ¯
solution of (3.8) with initial conditions x(0) = x̄”. Remember that this definition makes 
sense only when uniqueness of solutions is guaranteed, and that x(t, x̄) may by undefined 
when |t| is large, in which case we will write x(t, x̄) = ⊂. 

According to Theorem 3.2, x : � ∈� Rn is a continuous function defined on an open 
¯ x) defines a family of subset � ∀ R × Rn . With x considered a parameter, t ∈� x(t, ¯


smooth curves in Rn . When t is fixed, ¯ x) defines a continuous map form an open
x ∈� x(t, ¯
subset of Rn and with values in Rn . Note that x(t1, x(t2, ¯ x) whenever x)) = x(t1 + t2, ¯


x) ∞
x(t2, ¯ = ⊂. The function x : � ∈� Rn is sometimes called “differential flow” defined 
by (3.8). 

3.3.2 Attractors of asymptotically stable equilibria 

x0 ≤ Rn is called an equilibrium of (3.8) when a(¯ x0) ≥ ¯A poiint ¯ x0) = 0, i.e. x(t, ¯ x0 is a

constant solution of (3.8).


Definition An equilibrium ¯
x0 of (3.8) is called asymptotically stable if the following two 
conditions are satisfied: 

(a) there exists d > 0 such that x(t, ¯ x0 as t � ⊂ for all ¯ x0 − ¯x) � ¯ x satisfying |¯ x| < d; 

x) − ¯(b) for every � > 0 there exists � > 0 such that |x(t, ¯ x0| < � whenever t → 0 and 
|¯ x0| < �.x − ¯
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In other words, all solutions starting sufficiently close to an asymptotically stable 
equilibrium x̄0 converge to it as t � ⊂, and none of such solutions can escape far away 
before finally converging to x̄0. 

Theorem 3.3 Let x̄0 ≤ Rn be an asymptotically stable equilibrium of (3.8). The set 
x0) of all ¯ x) � ¯A = A(¯ x ≤ Rn such that x(t, ¯ x0 as t � ⊂ is an open subset of Rn, and 

its boundary is invariant under the transformations ¯ x).x ∈� x(t, ¯

The proof of the theorem follows easily from the continuity of x(·, ·). 

3.3.3 Limit points of a trajectory 

x0 ≤ Rn , the set of all possible limits x(tk , ¯ ˜ as k � ⊂, whereFor a fixed ¯ x0) � x 
the sequence {tk } also converges to infinity, is called the limit set of the “trajectory” 
t ∈� x(t, x̄0). 

Theorem 3.4 The limit set of a given trajectory is always closed and invariant under 
the transformations ¯ x).x ∈� x(t, ¯


