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This lecture presents results which describe local behavior of parameter-dependent ODE 
models in cases when dependence on a parameter is not continuous in the usual sense. 

10.1 Singularly perturbed ODE 

In this section we consider parameter-dependent systems of equations 

 

ẋ(t) = f(x(t), y(t), t), 
(10.1)

�ẏ = g(x(t), y(t), t), 

where � → [0, �0] is a small positive parameter. When � > 0, (10.1) is an ODE model. 
For � = 0, (10.1) is a combination of algebraic and differential equations. Models such 
as (10.1), where y represents a set of less relevant, fast changing parameters, are fre
quently studied in physics and mechanics. One can say that singular perturbations is the 
“classical” approach to dealing with uncertainty, complexity, and nonlinearity. 

10.1.1 The Tikhonov’s Theorem 

A typical question asked about the singularly perturbed system (10.1) is whether its 
solutions with � > 0 converge to the solutions of (10.1) with � = 0 as � � 0. A suffi
cient condition for such convergence is that the Jacobian of g with respect to its second 
argument should be a Hurwitz matrix in the region of interest. 

Theorem 10.1 Let x0 : [t0, t1] ∞� Rn , y0 : [t0, t1] ∞� Rm be continuous functions 
satisfying equations 

ẋ0(t) = f(x0(t), y0(t), t), 0 = g(x0(t), y0(t), t), 
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where f : Rn × Rm × R ∞� Rn and g : Rn × Rm × R ∞� Rm are continuous functions. 
Assume that f, g are continuously differentiable with respect to their first two arguments 
in a neigborhood of the trajectory x0(t), y0(t), and that the derivative 

A(t) = g2
� (x0(t), y0(t), t) 

is a Hurwitz matrix for all t → [t0, t1]. Then for every t2 → (t0, t1) there exists d > 0 and 
C > 0 such that inequalities |x0(t) − x(t)| ≈ C� for all t → [t0, t1] and |y0(t) − y(t)| ≈ C� 
for all t → [t2, t1] for all solutions of (10.1) with |x(t0) − x0(t0)| ≈ �, |y(t0) − y0(t0)| ≈ d, 
and � → (0, d). 

The theorem was originally proven by A. Tikhonov in 1930-s. It expresses a simple 
principle, which suggests that, for small � > 0, x = x(t) can be considered a constant 
when predicting the behavior of y. From this viewpoint, for a given t̄ → (t0, t1), one can 
expect that 

y(t̄ + ��) � y1(�), 

where y1 : [0,∀) is the solution of the “fast motion” ODE 

ẏ1(�) = g(x0(t̄), y1(�)), y1(0) = y(t̄). 

Since y0(t̄) is an equilibrium of the ODE, and the standard linearization around this 
equilibrium yields 

�̇(�) � A(t̄)�(�) 

where �(�) = y1(�) − y0(t̄), one can expect that y1(�) � y0(t̄) exponentially as � � ∀ 
whenever A(t̄) is a Hurwitz matrix and |y(t̄) − y0(t̄)| is small enough. Hence, when � > 0 
is small enough, one can expect that y(t) � y0(t). 

10.1.2 Proof of Theorem 10.1 

First, let us show that the interval [t0, t1] can be subdivided into subintervals �k = 
[�k−1, �k ], where k → {1, 2, . . . , N} and t0 = �0 < �1 < · · · < �N = t1 in such a way that 
for every k there exists a symmetric matrix Pk = Pk 

� > 0 for which 

Pk A(t) + A(t)�Pk < −I � t → [�k−1, �k ]. 

Indeed, since A(t) is a Hurwitz matrix for every t → [t0, t1], there exists P (t) = P (t)� > 0 
such that 

P (t)A(t) + A(t)�P (t) < −I. 

Since A depends continuously on t, there exists an open interval �(t) such that t → �(t) 
and 

P (t)A(�) + A(�)�P (t) < −I � � → �(t). 
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Now the open intervals �(t) with t → [t0, t1] cover the whole closed bounded interval 
[t0, t1], and taking a finite number of t̄k , k = 1, . . . ,m such that [t0, t1] is completely 
covered by �(t̄k ) yields the desired partition subdivision of [t0, t1]. 

Second, note that, due to the continuous differentiability of f, g, for every µ > 0 there 
exist C, r > 0 such that 

¯ ¯ ¯ ¯|f(x0(t) + �x, y0(t) + �y , t) − f(x0(t), y0(t), t)| ≈ C(|�x| + |�y |) 

and 
¯ ¯ ¯ ¯ ¯|g(x0(t) + �x, y0(t) + �y , t) − A(t)�y | ≈ C|�x| + µ|�y | 

¯for all t → R, �̄x → Rn , �y → Rm satisfying 

¯ ¯t → [t0, t1], |�x − x0(t)| ≈ r, |�y − y0(t)| ≈ r. 

For t → �k let

|�y |k = (�y 

� Pk �y )
1/2 .


Then, for 
�x(t) = x(t) − x0(t), �y (t) = y(t) − y0(t), 

we have 
|�̇x| ≈ C1(|�x| + |�y |k ), 

�|�̇y |k ≈ −q|�y |k + C1|�x| + �C1 (10.2) 

as long as �x, �y are sufficiently small, where C1, q are positive constants which do not 
depend on k. Combining these two derivative bounds yields 

d 
(|�x| + (�C1/q)|�y |) ≈ C2|�x| + �C2

dt

for some constant C2 independent of k. Hence 

|�x(�k−1 + �)| ≈ e C3� (|�x(�k−1)| + (�C1/q)|�y (�k−1)|) + C3� 

for � → [0, �k − �k−1]. With the aid of this bound for the growth of |�x|, inequality (10.2) 
yields a bound for |�y |k : 

|�y (�k−1 + �)| ≈ exp(−q�/�)|�y (�k−1)| + C4(|�x(�k−1)| + (�C1/q)|�y (�k−1)|) + C4�, 

which in turn yields the result of Theorem 10.1. 
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10.2 Averaging 

Another case of “potentially discontinuous” dependence on parameters is covered by the 
following “averaging” result. 

Theorem 10.2 Let f : Rn × R × R ∞� Rn be a continuous function which is � -periodic 
with respect to its second argument t, and continuously differentiable with respect to its 
first argument. Let x̄0 → Rn be such that f(x̄0, t, �) = 0 for all t, �. For x̄ → Rn define 

� � 

f̄(x̄, �) = f(x̄, t, �). 
0 

¯If df/dx|x=0,�=0 is a Hurwitz matrix, then, for sufficiently small � > 0, the equilibrium 
x ≤ 0 of the system 

ẋ(t) = �f(x, t, �) (10.3) 

is exponentially stable. 

Though the parameter dependence in Theorem 10.2 is continuous, the question asked 
is about the behavior at t = ∀, which makes system behavior for � = 0 not a valid 
indicator of what will occur for � > 0 being sufficiently small. (Indeed, for � = 0 the 
equilibrium x̄0 is not asymptotically stable.) 

To prove Theorem 10.2, consider the function S : Rn × R ∞� Rn which maps x(0), � 
to x(�) = S(x(0), �), where x(·) is a solution of (10.3). It is sufficient to show that the 

x, �) of Ṡ with respect to its first argument, evaluated at ¯ x0derivative (Jacobian) Ṡ(¯ x = ¯
and � > 0 sufficiently small, is a Schur matrix. Note first that, according to the rules on 
differentiating with respect to initial conditions, Ṡ(x̄0, �) = �(�, �), where 

d�(t, �) df 
= � (0, t, �)�(t, �), �(0, �) = I. 

dt dx

¯Consider D(t, �) defined by 

¯d�(t, �) df ¯ ¯= � (0, t, 0)�(t, �), �(0, �) = I. 
dt dx

¯Let �(t) be the derivative of �(t, �) with respect to � at � = 0. According to the rule for 
differentiating solutions of ODE with respect to parameters, 

� t df 
�(t) = (0, t1, 0)dt1. 

dx0 

Hence 
¯�(�) = df/dx|x=0,�=0 
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is by assumption a Hurwitz matrix. On the other hand, 

¯�(�, �) − �(�, �) = o(�). 

Combining this with 
�̄(�, �) = I + �(�)� + o(�) 

yields 
�(�, �) = I + �(�)� + o(�). 

Since �(�) is a Hurwitz matrix, this implies that all eigenvalues of �(�, �) have absolute 
value strictly less than one for all sufficiently small � > 0. 


