Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Take-Home Test 1 Solutions¹

Problem T1.1

Find all values of $\mu \in \mathbf{R}$ for which the function $V: \mathbf{R}^2 \mapsto \mathbf{R}$, defined by

$$V\left(\left[\begin{array}{c} \bar{x}_1\\ \bar{x}_2 \end{array}\right]\right) = \max\{|\bar{x}_1|, |\bar{x}_2|\}$$

IS MONOTONICALLY NON-INCREASING ALONG SOLUTIONS OF THE ODE

$$\begin{cases} \dot{x}_1(t) = \mu x_1(t) + \sin(x_2(t)), \\ \dot{x}_2(t) = \mu x_2(t) - \sin(x_1(t)). \end{cases}$$

Answer: $\mu \leq -1$. **Proof** For $\mu \leq -1$, $x_1 \neq 0$ we have

$$\frac{1}{2}\frac{d}{dt}x_1^2 = \mu x_1^2 + x_1 \sin(x_2) < -|x_1|(|x_1| - |x_2|)$$

and hence $|x_1|$ is strictly monotonically decreasing when $x \neq 0$ and $|x_1| \geq |x_2|$. Similarly, $|x_2|$ is strictly monotonically decreasing when $x \neq 0$ and $|x_2| \geq |x_1|$. Hence, when $\mu \leq -1$, V(x) is strictly monotonically decreasing along non-equilibrium trajectories of the system.

For $\mu > 1$, $x_1(0) = r$, $x_2(0) = r$, where r > 0 is sufficiently small we have

$$\dot{x}_1(0) = \mu r - \sin(r) > 0,$$

hence

$$V(x(t)) \ge x_1(t) > r = V(x(0))$$

when t > 0 is small enough, which proves that V is not monotonically decreasing.

¹Version of October 20, 2003

Problem T1.2

Find all values of $r \in \mathbf{R}$ for which differential inclusion of the form

$$\dot{x}(t) \in \eta(x(t)), \quad x(0) = \bar{x}_0,$$

WHERE $\eta: \mathbf{R}^2 \mapsto 2^{\mathbf{R}^2}$ is defined by

$$\eta(\bar{x}) = \{ f(\bar{x}/|\bar{x}|) \} \text{ for } \bar{x} \neq 0,$$

$$\eta(0) = \{ f(y) : y = [y_1; y_2] \in \mathbf{R}^2, |y_1| + |y_2| \le r \},$$

HAS A SOLUTION $x : [0, \infty) \mapsto \mathbf{R}^2$ FOR EVERY CONTINUOUS FUNCTION $f : \mathbf{R}^2 \mapsto \mathbf{R}^2$ AND FOR EVERY INITIAL CONDITION $\bar{x}_0 \in \mathbf{R}^2$. Answer: $r > \sqrt{2}$.

Proof First, let us show that existence of solutions is not guaranteed when $r < \sqrt{2}$. Let $\epsilon > 0$ be such that $2\epsilon < \sqrt{2} - r$. Define

$$f\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}0.5\sqrt{2}(1-\epsilon) - x_1\\0.5\sqrt{2}(1-\epsilon) - x_2\end{array}\right].$$

Let us show that, for this f, the differential inclusion $\dot{x}(t) = \in \eta(x(t))$ will have no solutions $x: [0, \infty) \mapsto \mathbf{R}^2$ with x(0) = 0. Indeed, since

$$x'f(x/|x|) < 0 \quad \forall \quad x \neq 0, x \in \mathbf{R}^2,$$

|x(t)| is strictly monotonically decreasing when $x(t) \neq 0$. Therefore x(0) = 0 implies x(t) = 0 for $t \geq 0$. Hence $\dot{x}(t) = 0 \in \eta(0)$. However, for $r < \sqrt{2}$, and for this particular selection of $f(\cdot)$, zero is not an element of $\eta(0)$. The contradiction shows that no solution with x(0) = 0 exists.

To prove existence of solutions for $r \ge \sqrt{2}$, one is tempted to use the existence theorem relying on convexity and semicontinuity of $\eta(\cdot)$. However, these assumptions are not necessarily satisfied in this case, since the set $\eta(0)$ does not have to be convex. Instead, note that, by the continuity of f, existence of a solution $x : [t_0, t_0 + |\bar{x}_0|/M) \mapsto \mathbf{R}^2$ with $x(t_0) = \bar{x}_0$ is guaranteed for all $\bar{x}_0 \neq 0$. Hence, it is sufficient to show that a solution $x_0 : [0, \infty) \mapsto \mathbf{R}^2$ with $x_0(0) = 0$ exists.

To do this, consider two separate cases: $0 \in \eta(0)$ and $0 \notin \eta(0)$. If $0 \in \eta(0)$ then $x(t) \equiv 0$ is the desired solution of the differential inclusion. Let us show that $0 \notin \eta(0)$ implies existence of a solution $q \in (0, \infty)$, |u| = 1 of the equation f(u) = qu. Indeed, if $0 \notin \eta(0)$ and $r \geq \sqrt{2}$ then $0 \neq f(\tau u)$ for all $\tau \in [0, 1]$, |u| = 1, and hence

$$(\tau, u) \mapsto \frac{f(\tau u)}{|f(\tau u)|}$$

is a homotopy between the vector fields $f_1 : u \mapsto f(u)/|f(u)|$ and $f_0 : u \mapsto f(0)/|f(0)|$. Since the index of the *constant* map f_0 is zero, the index of f_1 is zero as well. However, assuming that $f(u) \neq qu$ for $q \in (0, \infty)$, |u| = 1 yields a homotopy

$$(\tau, u) \mapsto \frac{\tau u + (1 - \tau)f(u)}{|\tau u + (1 - \tau)f(u)|}$$

between f_1 and the identity map, which is impossible, since the identity map has index 1.

Hence f(u) = qu for some q > 0, |u| = 1, which yields $x_0(t) = qtu$ as as a valid solution $x_0 : [0, \infty) \mapsto \mathbf{R}^2$ of the differential inclusion.

Problem T1.3

FIND ALL VALUES $q, r \in \mathbf{R}$ for which $\bar{x}_0 = 0$ is *not* A (locally) stable equilibrium of the ODE

$$\dot{x}(t) = Ax(t) + B(Cx(t))^{1/3}$$
(1.1)

FOR EVERY SET OF MATRICES A, B, C OF DIMENSIONS *n*-BY-*n*, *n*-BY-1, AND 1-BY-*n* RESPECTIVELY, SUCH THAT A IS A HURWITZ MATRIX AND

$$\operatorname{Re}[(1+j\omega q)G(j\omega)] > r \quad \forall \ \omega \in \mathbf{R}$$

$$(1.2)$$

FOR

$$G(s) = C(sI - A)^{-1}B.$$

Answer: $r \ge 0$, $q \in \mathbf{R}$ arbitrary (note, however, that for $r \ge 0$ (1.2) implies $q \ge 0$).

Proof If r < 0, take A = -1, B = 0, C = 1 to get an example of A, B, C satisfying the conditions and such that $\bar{x}_0 = 0$ is a (globally asymptotically) stable equilibrium of (1.1). Now consider the case $r \ge 0$. Then, informally speaking, the frequency domain

condition means some sort of "passivity" of G, while (1.1) describes a positive feedback interconnection of G with nonlinearity $y \mapsto w = y^{1/3}$, which can be characterized as having arbitrarily large positive gain for $x \approx 0$. Hence one expects instability of the zero equilibrium of (1.1).

To show local instability, let us prove existence of a Lyapunov function V = V(x) for which 0 is not a local minimum, and

$$\frac{d}{dt}V(x(t)) < 0$$
 whenever $|Cx(t)| \in (0, \epsilon_0)$

for some $\epsilon_0 > 0$. Note that this will imply instability of the equilibrium $\bar{x}_0 = 0$, since every solution with V(x(0)) < V(0) and $|x(0)| < \epsilon_0/2|C|$ will eventually cross the sphere $|x(0)| = \epsilon_0/2|C|$ (otherwise $|Cx(t)| \le \epsilon_0/2$ for all $t \ge 0$, hence V(x(t)) is monotonically

4

non-increasing, and all limit points \bar{x} of $x(\cdot)$ satisfy $C\bar{x} = 0$, therefore every solution $x_*(t)$ of (1.1) beginning at such limit point satisfies $Cx_*(t) = 0$ and hence converges to the origin, which contradicts V(x(0)) < V(0)).

By introducing $w(t) = (Cx(t))^{1/3}$, system equations can be re-written in the form

$$\dot{x}(t) = Ax(t) + Bw(t).$$

Consider first the (simpler) case when r > 0 (and hence q > 0). Then one can use the inequality

$$w(t)Cx(t) \le r|w(t)|^2,$$

for sufficiently small |Cx(t)|. Condition (1.2) together with the KYP Lemma yields existence of a matrix P = P' such that

$$\bar{w}C\bar{x} + q\bar{w}C(A\bar{x} + B\bar{w}) - r|\bar{w}|^2 \ge 2\bar{x}'P(A\bar{x} + B\bar{w}) \quad \forall \ \bar{x} \in \mathbf{R}^n, \bar{w} \in \mathbf{R}.$$

Substituting $w = (Cx)^{1/3}$, we get

$$\frac{d}{dt}[x'Px - 0.75q|Cx|^{4/3}] \le |Cx|^{4/3} - r|Cx|^{2/3},$$

which is exactly what is needed, because $y^{4/3} - ry^{2/3} < 0$ for $y \in (0, \sqrt{r})$. In addition, for every $\bar{x}_0 \in \mathbf{R}^n$ such that $C\bar{x}_0 \neq 0$ the expression

$$V(\bar{x}) = \bar{x}' P \bar{x} - 0.75q |C\bar{x}|^{4/3}$$

is negative when $\bar{x} = r\bar{x}_0$ and r > 0 is small enough.

To prove the answer in the general case, note that the inequality

$$w(t)Cx(t) > R|Cx(t)|^2$$

is satisfied whenever $|Cx(t)| \in (0, \epsilon)$ with $\epsilon > 0$ and $R = \epsilon^{-2/3}$, i.e. R can be made arbitrarily large by selecting an appropriate $\epsilon > 0$. Therefore the derivative bound for V(x(t)) = x(t)'Px(t) will hold if

$$2\bar{x}'P(A\bar{x}+B\bar{w}) \le R|C\bar{x}|^2 - \bar{w}C\bar{x} \quad \forall \ \bar{x} \in \mathbf{R}^n, \bar{w} \in \mathbf{R}.$$
(1.3)

According to the KYP Lemma, such P = P' exists if

$$|R|G(j\omega)|^2 - \operatorname{Re}(G(j\omega)) > 0 \quad \forall \ \omega \in \mathbf{R},$$

or, equivalently,

$$\operatorname{Re}(1/G(j\omega)) < R \quad \forall \ \omega \in \mathbf{R}.$$

Moreover, substituting w = (R + K)Cx, where K > 0 is a constant, into (1.3) yields

$$P(A + BKC) + (A + BKC)'P \le -KC'C.$$

Therefore, P = P' cannot be positive semidefinite if A + BKC has eigenvalues with positive real part.

We will rely on the following statement from the linear system theory: if H(s) is a stable proper rational transfer function which is positive real (i.e. $\operatorname{Re}(H(j\omega)) > 0$ for all $\omega \in \mathbf{R}$) then $\operatorname{Re}(s) > 0$ whenever $\operatorname{Re}(s) > 0$, and the relative degree of H is not larger than one.

Consider H(s) = (1+qs)G(s). By assumption, H is positive real and proper. Hence $q \ge 0$ (otherwise H(-1/q) = 0). If relative degree of H is zero then q > 0, and hence sG(s) converges to a non-zero limit H_* as $s \to \infty$. Since (1+qr)G(r) > 0 for r > 0, it follows that $H_* > 0$, and hence

$$\operatorname{Re}\frac{1}{G(j\omega)} = \operatorname{Re}\frac{j\omega}{G(j\omega)}$$

is bounded as $\omega \to \infty$.

If relative degree of H is one then sH(s) converges to a positive limit as $s \to \infty$, and hence

$$\operatorname{Re}\frac{1}{G(j\omega)} = \operatorname{Re}\frac{j\omega - (j\omega)^2}{(j\omega)^2 G(j\omega)}$$

is bounded from above as $\omega \to \infty$. Finally, since G(r) > 0 and $G(r) \to 0$ as $r \to +\infty$, it follows that the equation 1 = KG(r) has a positive solution r for all sufficiently large K > 0. Hence matrix A + BKC has a positive eigenvalue for all sufficiently large K > 0.