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Stabilization


The state of a reachable system can be steered to any desired state in finite 
time, even if the system is “unstable.” 

However, an “open-loop” control strategy depends critically on a number of 
assumptions: 

Perfect knowledge of the model; 

Perfect knowledge of the initial condition; 

No input constraints. 

It is necessary to use some information on the actual system state in the 
computation of the control input: i.e., feedback. 

Feedback can also improve the performance of stable systems... but done 
incorrectly, can also make things worse, most notably, make stable systems 
unstable. 
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State Feedback


Assume we can measure all components of a system’s state, i.e., consider a 
state-space model of the form (A, B, I , 0). 

Assume a linear control law of the form u = Fx + v . 

In CT, the closed-loop system model is (A + BF , B, I , 0). 

Hence, it is clear that the closed-loop system is stable if and only if the 
eigenvalues of A − BF are all in the open left-half plane (or all inside the unit 
circle, in the DT time case). 
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Eigenvalue Placement


Theorem 

There exists a matrix F such that 

det(λI − (A + BF )) = 
n� 

i=1 

(λ − µi ) 

for any arbitrary self-conjugate set of complex numbers µ1, . . . , µn ∈ C if and only 
if (A, B) is reachable. 

Proof (necessity): 

Suppose λi is an unreachable mode, and let wi be the associated left 
T
i A = λi w

T
i

T
i B = 0. eigenvector. Hence, w , and w

Then, 
T
i

T
i A + w Ti BF = λi w Ti + 0,(A + BF ) = ww 

i.e., λi is an eigenvalue of A + BF for any F ! 
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Eigenvalue Placement 

Proof — Sufficiency: 

Assuming the system is reachable, find a feedback such that the closed-loop 
poles are at the desired locations. We will prove this only for the single-input 
case. 

If the system is reachable, then w.l.g. we can assume its realization is in the 
controller canonical form: the coefficients of the characteristic polynomial are 
a1, a2, .... an. 

The coefficients of the closed-loop characteristic polynomial are (a1 − f1), etc. 

Just choose fi = ai − ai
d , i = 1, . . . , n. 
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Ackermann Formula


F = −[0, 0, . . . , 1]R−1αd (A).n 
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Observers


What if we cannot measure the state? 

Design a model-based observer, i.e., a system that contains a simulation of 
the system, and tries to match its state.


dx̂/dt = Ax̂ + Bu − L(y − ŷ).


Error dynamics: e = x − x̂ :


ė = ẋ −ˆ̇x = Ax + Bu − Ax̂ − Bu + L(y − ŷ) = (A + LC )e.


Same results (dual) as for reachability. 
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Eigenvalue placement


Theorem 

There exists a matrix L such that 

det(λI − (A + LC )) = 
n� 

i=1 

(λ − µi ) 

for any arbitrary self-conjugate set of complex numbers µ1, . . . , µn ∈ C if and only 
if (C , A) is observable. 

Ackermann formula: ⎤⎡ ⎢⎢⎣ 

0 
0 
. . . 
1 

⎥⎥⎦L = −αd (A)O−1 
n 
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Model-based output-feedback controller


—model-based controller block diagram— 

We have 

ẋ = Ax + Bu = Ax + B(r + F x̂) = Ax + BF x̂ + Br 

now define x̃ = x − x̂ : 

ẋ = (A + BF )x − BF x̃ + Br 

In summary: � � � � � � � � 
d x A + BF −BF x B 

= + r . 
dt x̃ 0 A + LC x̃ 0 
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Synthesis of model-based output feedback controller


Poles of the closed-loop = c.l. poles of the controller ∪ c.l. poles of the 
observer. 

Separation principle: can design controller and observer independently! 
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Parameterization of all stabilizing controllers (SISO case) 

Consider the feedback interconnection of a plant G and a controller K . 

Write the plant transfer function as G (s) = N(s)/M(s), and the controller 
transfer function as K (s) = Y (s)/X (s). 

This can always be done in such a way that N(s), M(s), and Y (s), X (s) are 
stable transfer functions—even in the case in which G and/or K are 
themselves unstable. 

The closed-loop system is (externally) stable if and only if


G (s) K (s) K (s)G (s)

, ,

1 + K (s)G (s) 1 + K (s)G (s) 1 + K (s)G (s)


are stable transfer functions.


Note that the transfer functions above can be rewritten as: 

N(s)X (s) M(s)Y (s) N(s)Y (s) 
, , . 

D(s) D(s) D(s) 

where D(s) = M(s)X (s) − N(s)Y (s). 
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Bezout’s identity


In other words, since the terms appearing at the numerators are all products 
of stable transfer functions (and hence stable transfer functions), a necessary 
and sufficient condition for the stability of the interconnection is that 1/D(s) 
is a stable transfer function. 

In other words, D(s) = M(s)X (s) − N(s)Y (s) must have no zeroes in the 
open left half-plane (CT), or in the unit disk (DT). 

It turns out that one can, without loss of generality 1, set D(s) = 1, in which 
case we get the so-called Bezout’s identity 

M(s)X (s) − N(s)Y (s) = 1. 

1You can see this by writing Y �(s) = Y (s)/D(s), and X �(s) = X (s)/D(s). Clearly, this is 
still a valid way of expressing K (s), i.e., K (s) = Y �(s)/X �(s), and both Y �(s) and X �(s) are 
stable transfer functions. Writing down the stability condition in this case and simplifying, you 
get Bezout’s identity. 
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Youla’s Q parameterization


Theorem 

Let G (s) = N(s)/M(s), and let K0(s) = Y0(s)/X0(s), with N(s), M(s), Y0(s), 
and X0(s) stable transfer functions, be a stabilizing feedback controller, and such 
that 

M(s)X0(s) − N(s)Y0(s) = 1. 

Then all feedback stabilizing controllers for G are given by 

K (s) = 
Y0(s) − M(s)Q(s) 
X0(s) − N(s)Q(s) 

, 

where Q(s) is an arbitrary stable transfer function. 

Note that with this parameterization, the I/O transfer functions are affine in Q: 

r → y : N(s)(X0(s) − N(s)Q(s)); 

d → u: M(s)(Y0(s) − M(s)Q(s)); 

d → y : M(s)(X0(s) − N(s)Q(s)). 
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Youla’s Q parameterization—proof 

For any stable Q, Y (s) = Y0(s) − M(s)Q(s) and X (s) = X0(s) − N(s)Q(s) 
are stable, and the proposed controller K (s) = Y (s)/X (s) is stable: 

M(s)X (s)−N(s)Y (s) = M(s)(X0(s)−N(s)Q(s))−N(s)(Y0(s)−M(s)Q(s)) 

= M(s)X0(s) − M(s)N(s)Q(s) − N(s)Y0(s) + N(s)M(s)Q(s) = 1. 

Conversely, assume K1(s) = Y1(s)/X1(s) is a stabilizing controller, such that 
M(s)X1(s) − N(s)Y1(s) = 1. Then 

Y1(s) Y0(s) − M(s)Q(s) 
= 

X1(s) X0(s) − N(s)Q(s) 

implies that 

Y1(s)X0(s) − Y1(s)N(s)Q(s) = X1(s)Y0(s) − X1(s)M(s)Q(s). 

Rearranging, we get 

Y1(s)X0(s) − X1(s)Y0(s) = Y1(s)N(s)Q(s) − X1(s)M(s)Q(s) = Q(s). 

Since the transfer function on the left is a stable transfer function, this 
completes the proof. 
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Youla’s Q parameterization — block diagram 

Set u = F x̂+r +v , where v is the output of a stable system Q with input y −ŷ : 

                

                  

                 

                    

                

              

                         

                  

               

               

                    

                

                

                 

                   

                   

                    

        

                   

               

              

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

You can show (see, e.g., exercise 29.6 in the textbook) that this block

diagram corresponds to the Youla parameterization described previously in

algebraic terms.

This parameterizes all possible stabilizing LTI output feedback controllers,

i.e., LTI maps from y to u.
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