6.241 Dynamic Systems and Control

Lecture 21: Minimal Realizations

Readings: DDV, Chapters 25

Emilio Frazzoli
Aeronautics and Astronautics
Massachusetts Institute of Technology

April 25, 2011

Reachable/(un)observable subspaces

Recall:

- The set of reachable states is a subspace of the state space \mathbb{R}^{n}, given by

$$
\operatorname{Ra}\left(R_{n}\right):=\operatorname{Ra}\left(\left[A^{n-1} B|\ldots| A B \mid B\right]\right) .
$$

- The set of unobservable states is a subspace of the state space \mathbb{R}^{n}, given by

$$
\operatorname{Null}\left(O_{n}\right):=\operatorname{Null}\left(\left[\begin{array}{c}
C \\
C A \\
\cdots \\
C A^{n-1}
\end{array}\right]\right)
$$

- Both the reachable space and the unobservable space are A invariant, i.e., if x is reachable (resp., unobservable) so is $A x$.

Kalman Decomposition

- Construct an invertible matrix in the following way:

$$
T=\left[\begin{array}{ll}
T_{r} & T_{\bar{r}}
\end{array}\right]=\left[\begin{array}{llll}
T_{r \bar{o}} & T_{r o} & T_{\bar{r} \bar{o}} & T_{\bar{r} o}
\end{array}\right],
$$

where

- the columns of $T_{r}=\left[T_{r \bar{o}} T_{r r}\right]$ form a basis for the reachable space. In particular, the columns of $T_{r o}$ are also in the unobservable space.
- the columns of $T_{\bar{r}}\left[T_{\bar{r} \bar{O}} T_{\bar{r} O}\right]$ complement the reachable space. In particular, the columns of $T_{\bar{r} \bar{o}}$ are also in the unobservable space.
- Note that any of the matrices appearing in the definition of T may in fact have 0 columns, i.e., not be present in particular instances (e.g., for reachable and observable systems, one would only have $T_{\text {ro }}$)
- Use the matrix T for a similarity transformation:

$$
(A, B, C, D) \rightarrow\left(T^{-1} A T, T^{-1} B, C T, D\right)=(\hat{A}, \hat{B}, \hat{C}, \hat{D})
$$

this is called the Kalman decomposition.

Kalman Decomposition - structure of the system matrix

- Based on the definition of T, one can write

$$
A\left[\begin{array}{ll}
T_{r} & T_{\bar{r}}
\end{array}\right]=\left[\begin{array}{ll}
T_{r} & T_{\bar{r}}
\end{array}\right]\left[\begin{array}{ll}
A_{r r} & A_{\bar{r} r} \\
A_{r \bar{r}} & A_{\bar{r}}
\end{array}\right]
$$

i.e.,

$$
A\left[\begin{array}{lllll}
T_{r \bar{o}} & T_{r o} & T_{\bar{r} \bar{o}} & T_{\bar{r} o}
\end{array}\right]=\left[\begin{array}{llll}
T_{r \bar{o}} & T_{r o} & T_{\bar{r} \bar{o}} & T_{\bar{r} o}
\end{array}\right]\left[\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]
$$

- Since the range of T_{r} is A-invariant, then $A_{r \bar{r}}$ must be zero, i.e., A_{31}, A_{32}, $A_{41}, A_{42}=0$.
- Since the range of [$T_{r \bar{o}} T_{\bar{r} \bar{o}}$] is A-invariant, then $A_{21}, A_{23}, A_{41}, A_{43}$ must also be zero.

Kalman Decomposition - structure of the B, C matrices

- Noting that $\operatorname{Ra}(B) \in \operatorname{Ra}\left(R_{n}\right)$, and

$$
B=T \hat{B}=\left[T_{r} T_{\bar{r}}\right]\left[\begin{array}{c}
B_{r} \\
B_{\bar{r}}
\end{array}\right],
$$

one can conclude that $B_{\bar{r}}=0$, i.e., $\hat{B}=\left[\begin{array}{c}B_{r} \\ 0\end{array}\right]$.

- Similarly, since $\operatorname{Null}\left(O_{n}\right) \subseteq \operatorname{Null}(C)$, and

$$
C T=C\left[\begin{array}{llll}
T_{r \bar{o}} & T_{r o} & T_{\bar{r} \bar{o}} & T_{\bar{r} o}
\end{array}\right]=\hat{C},
$$

one can conclude that $C_{r \bar{o}}, C_{\bar{r} \bar{o}}$ must be zero, i.e.,

$$
\hat{C}=\left[\begin{array}{llll}
0 & C_{r o} & 0 & C_{\bar{r} o}
\end{array}\right] .
$$

Kalman Decomposition

- Summarizing, we get

$$
\begin{aligned}
\hat{A}=\left[\begin{array}{cccc}
A_{r \bar{o}} & A_{12} & A_{13} & A_{14} \\
0 & A_{r o} & 0 & A_{24} \\
0 & 0 & A_{\bar{r} \bar{o}} & A_{34} \\
0 & 0 & 0 & A_{\bar{r} 0}
\end{array}\right], & \hat{B}=\left[\begin{array}{c}
B_{r \bar{o}} \\
B_{r o} \\
0 \\
0
\end{array}\right] \\
\hat{C}=\left[\begin{array}{llll}
0 & C_{r o} & 0 & C_{\bar{r}}
\end{array}\right], & \hat{D}=D .
\end{aligned}
$$

- From this decomposition, one can get the reachable subsystem:

$$
\left(\left[\begin{array}{cc}
A_{r \bar{o}} & A_{12} \\
0 & A_{r o}
\end{array}\right],\left[\begin{array}{l}
B_{r \bar{o}} \\
B_{r o}
\end{array}\right],\left[\begin{array}{ll}
0 & C_{r o}
\end{array}\right], D\right),
$$

and the observable subsystem

$$
\left(\left[\begin{array}{cc}
A_{r o} & A_{24} \\
0 & A_{\bar{r} o}
\end{array}\right],\left[\begin{array}{c}
B_{r o} \\
0
\end{array}\right],\left[\begin{array}{ll}
C_{r o} & C_{\bar{r}}
\end{array}\right], D\right),
$$

with their unobservable/uncontrollable parts clearly displayed.

Remarks on the Kalman decomposition

-figure showing input-output connections-

- The Kalman decomposition is unique up to similarity transformation with the same block structure.
- Eigenvalues of the various subsystems are uniquely defined.

Realizations

- Recall that given a discrete-time state-space model (A, B, C, D), one can obtain an equivalent I / O model with transfer function $H(z)=C(z l-A)^{-1} B+D$.
- How can we do the converse? i.e., given a transfer function, how can we get an equivalent state-space model?
- Note that

$$
H(z)=C(z l-A)^{-1} B+D=C_{r o}\left(z l-A_{r o}\right)^{-1} B_{r o}+D,
$$

i.e., the transfer function of a system is entirely defined by its reachable and observable part.

- The function $H(z)$ can also be written as

$$
H(z)=H_{0}+z^{-1} H_{1}+z^{-2} H_{2}+\ldots,
$$

where the coefficients H_{i} (also called the Markov parameters) describe the response at time step i to an impulse at time 0 (and zero initial conditions). These coefficients can be computed as

$$
H_{0}=D, \text { and } H_{k}=C A^{k-1} B, \text { for } k \geq 1
$$

Minimal Realizations

- In particular, one is interested in getting the smallest possible realization of a transfer function model.
- Theorem: A realization is minimal if and only if it is reachable and observable.
- Proof:
- For the necessity part, it is clear that if a realization of a transfer function is not reachable or not observable, one could extract its reachable and observable part through the Kalman decomposition, which is smaller.
- For sufficiency, assume (A, B, C, D) is reachable and observable of order n, but is not minimal, i.e., there is another (reachable and observable) realization $\left(A^{*}, B^{*}, C^{*}, D^{*}\right)$ of smaller order n^{*}. Then,

$$
O_{n} R_{n}=\left[\begin{array}{cccc}
H_{1} & H_{2} & \ldots & H_{n} \\
H_{2} & H_{3} & \ldots & \\
\ldots & & & \\
H_{n} & \ldots & \ldots & H_{2 n-1}
\end{array}\right]=O_{n}^{*} R_{n}^{*}
$$

but the rank of $O_{n} R_{n}$ is n, while the rank of $O_{n}^{*} R_{n}^{*}$ is $n^{*}<n$, which is a contradiction.

Minimal Realizations of SISO systems

- A way to compute a minimal realization of a SISO system is by using canonical forms, e.g., controller canonical form.
- In this case, given a (proper) rational transfer function in the form

$$
G(s)=\frac{b_{n-1} s^{n-1}+b_{n-2} s^{n-2}+\ldots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+a_{n-2} s^{n-2} \ldots+a_{0}}+G(\infty)
$$

we get

$$
\begin{aligned}
& A= {\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & & & & \\
0 & 0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{n-1}
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
0 \\
\ldots \\
0 \\
1
\end{array}\right] } \\
& C=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{n-1}
\end{array}\right], \quad D=G(\infty) .
\end{aligned}
$$

Minimal Realizations of MIMO systems

- Could do a SISO minimal realization for each entry in the matrix transfer function.
- However, this realization may not be minimal

Gilbert's realization

- Consider a matrix transfer function $H(z)$, with m inputs and p outputs.
- Let $d(s)$ be the least common denominator, and assume that $d(z)$ has no repeated roots.
- Compute the partial fraction expansion of H, in the form $H(z)=H(\infty)+\sum_{i=1}^{q} \frac{1}{z-\rho_{i}} R_{i}$; let r_{i} be the rank of each residue matrix R_{i}.
- Write each residue matrix as $R_{i}=C_{i}^{p \times r_{i}} B_{i}^{r_{i} \times m}$
- The desired realization is:

$$
\begin{gathered}
A=\left[\begin{array}{ccccccc}
\rho_{1} & & & & & & \\
& \ddots & & & & & \\
& & \rho_{1} & & & & \\
& & & \ddots & & & \\
& & & & \rho_{i} & & \\
& & & & & \ddots & \\
& & & & & \rho_{i}
\end{array}\right], \quad B=\left[\begin{array}{lll}
C_{1} & \cdots & C_{i}
\end{array}\right], \quad D=H(\infty) .
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

