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Reachable/(un)observable subspaces 

Recall: 

The set of reachable states is a subspace of the state space Rn, given by 

Ra(Rn) := Ra An−1B| . . . |AB|B . 

The set of unobservable states is a subspace of the state space Rn, given by ⎞⎤⎡⎛ 

Null(On) := Null
⎢⎢⎣ 

⎜⎜⎝ 

C

CA

. . . 

CAn−1 

⎟⎟⎠⎥⎥⎦ . 

Both the reachable space and the unobservable space are A invariant, i.e., if 
x is reachable (resp., unobservable) so is Ax . 

E. Frazzoli (MIT) Lecture 21: Minimal Realizations April 25, 2011 2 / 12 



� � � � 
Kalman Decomposition 

Construct an invertible matrix in the following way: 

T = Tr Tr̄ = Tr ō Tro Tr̄ ō Tr̄ o , 

where 

the columns of Tr = [Tr ōTro ] form a basis for the reachable space. In 
particular, the columns of Tr ō are also in the unobservable space.


the columns of Tr̄ [Tr̄ ōTr̄ o ] complement the reachable space. In particular, the

columns of Tr̄ ō are also in the unobservable space.


Note that any of the matrices appearing in the definition of T may in fact

have 0 columns, i.e., not be present in particular instances (e.g., for reachable

and observable systems, one would only have Tro )


Use the matrix T for a similarity transformation: 

(A, B, C , D) (T −1AT , T −1B, CT , D) = (Â, B̂, Ĉ , D̂);→ 

this is called the Kalman decomposition. 
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Kalman Decomposition — structure of the system matrix 

Based on the definition of T , one can write 

Arr Ar̄ r A[Tr Tr̄ ] = [Tr Tr̄ ] Ar r̄ Ar̄ r̄ 

i.e., ⎤⎡ 

A Tr ō Tro Tr̄ ō Tr̄ o = Tr ō Tro Tr̄ ō Tr̄ o 

⎢⎢⎣ 

A11 A12 A13 A14


A21 A22 A23 A24


A31 A32 A33 A34


A41 A42 A43 A44


⎥⎥⎦ 

Since the range of Tr is A-invariant, then Ar r̄ must be zero, i.e., A31, A32, 
A41, A42 = 0. 

Since the range of [Tr ōTr̄ ō ] is A-invariant, then A21, A23, A41, A43 must also 
be zero. 
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Kalman Decomposition — structure of the B , C matrices


Noting that Ra(B) ∈ Ra(Rn), and 

B = TB̂ = [Tr Tr̄ ]	
Br ,
Br̄ 

one can conclude that Br̄ = 0, i.e., B̂ = 
Br . 
0 

Similarly, since Null(On) ⊆ Null(C ), and 

CT = C Tr ō Tro Tr̄ ō Tr̄ o = Ĉ , 

one can conclude that Cr ō , Cr̄ ō must be zero, i.e., 

Ĉ = 0 Cro 0 Cr̄ o . 
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�� � � � � � � 

Kalman Decomposition 

Summarizing, we get ⎤⎡⎤⎡ 
Ar ō A12 A13 A14 Br ō⎢⎢⎣ 
0 Aro 0 A24 

0 0 Ar̄ ō A34 

⎥⎥⎦ , B̂ = 
⎢⎢⎣ 
Bro 

0 

⎥⎥⎦Â = 

0 0 0 Ar̄ o 0 

Ĉ , D̂ = D.0 Cro 0 Cr̄ o = 

From this decomposition, one can get the reachable subsystem: � 
0 

Ar ō A12 Br ō Cro , D, , ,
0 Aro Bro 

and the observable subsystem 

Aro A24 Bro Cro Cr̄ o , D, , ,
0 Ar̄ o 0 

with their unobservable/uncontrollable parts clearly displayed. 
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Remarks on the Kalman decomposition


—figure showing input-output connections— 

The Kalman decomposition is unique up to similarity transformation with the 
same block structure. 

Eigenvalues of the various subsystems are uniquely defined. 
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Realizations 

Recall that given a discrete-time state-space model (A, B, C , D), one can 
obtain an equivalent I/O model with transfer function 
H(z) = C (zI − A)−1B + D. 
How can we do the converse? i.e., given a transfer function, how can we get 
an equivalent state-space model? 
Note that 

H(z) = C (zI − A)−1B + D = Cro (zI − Aro )
−1Bro + D, 

i.e., the transfer function of a system is entirely defined by its reachable and 
observable part. 
The function H(z) can also be written as 

H(z) = H0 + z−1H1 + z−2H2 + . . . , 

where the coefficients Hi (also called the Markov parameters) describe the 
response at time step i to an impulse at time 0 (and zero initial conditions). 
These coefficients can be computed as 

H0 = D, and Hk = CAk−1B, for k ≥ 1. 
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Minimal Realizations


In particular, one is interested in getting the smallest possible realization of a 
transfer function model. 

Theorem: A realization is minimal if and only if it is reachable and observable. 

Proof: 
For the necessity part, it is clear that if a realization of a transfer function is 
not reachable or not observable, one could extract its reachable and observable 
part through the Kalman decomposition, which is smaller. 
For sufficiency, assume (A, B, C , D) is reachable and observable of order n, but 
is not minimal, i.e., there is another (reachable and observable) realization 
(A∗, B∗, C ∗, D∗) of smaller order n∗. Then, ⎤⎡ 

H1 H2 . . . Hn 

H2 H3 . . . 
OnRn = 

⎢⎢⎣ 
⎥⎥⎦ = On 

∗Rn 
∗ 

. . .

Hn . . . . . . H2n−1


but the rank of OnRn is n, while the rank of On 
∗Rn 

∗ is n∗ < n, which is a 
contradiction. 
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Minimal Realizations of SISO systems


A way to compute a minimal realization of a SISO system is by using 
canonical forms, e.g., controller canonical form. 

In this case, given a (proper) rational transfer function in the form 

G (s) = 
bn−1s

n−1 + bn−2s
n−2 + . . . + b0 

+ G (∞), 
sn + an−1sn−1 + an−2sn−2 . . . + a0 

we get ⎤⎡⎤⎡ 
0 1 0 . . . 0 0 

A = 

⎢⎢⎢⎢⎣ 

0 0 1 . . . 0 
. . . 
0 0 0 . . . 1 

⎥⎥⎥⎥⎦ 
, B = 

⎢⎢⎢⎢⎣ 

0 
. . . 
0 

⎥⎥⎥⎥⎦ 

−a0 −a1 −a2 . . . −an−1 1 

C = b0 b1 . . . bn−1 , D = G (∞). 
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Minimal Realizations of MIMO systems


Could do a SISO minimal realization for each entry in the matrix transfer 
function. 

However, this realization may not be minimal 
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Gilbert’s realization 

Consider a matrix transfer function H(z), with m inputs and p outputs. 
Let d(s) be the least common denominator, and assume that d(z) has no 
repeated roots. 
Compute the partial fraction expansion of H, in the form 

q 1H(z) = H(∞) + Ri ; let ri be the rank of each residue matrix Ri .i=1 z−ρi 

= C p×ri B ri ×m 
i iWrite each residue matrix as Ri 

The desired realization is: ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

ρ1 

. . . 
ρ1 

. . . 
ρi 

. . . 
ρi 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 
B1 ⎢⎣ 

⎥⎦. .A = , B = . 
Bi 

C = C1 Ci , D = H(∞).· · · 
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