6.241 Dynamic Systems and Control

Lecture 20: Reachability and Observability

Readings: DDV, Chapters 23, 24

Emilio Frazzoli

Aeronautics and Astronautics Massachusetts Institute of Technology

April 20, 2011

E. Frazzoli (MIT)

Lecture 20: Reachability and Observability

April 20, 2011 1 / 11

(日)

Reachability in continuous time

• Given a system described by the (n-dimensional) state-space model

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = 0,$$

a point x_d is said to be reachable in time L if there exists an input $u: t \in [0, L] \mapsto u(t)$ such that $x(L) = x_d$.

• Given an input signal over [0, L], one can compute

$$x(L) = \int_0^L e^{A(L-t)} Bu(t) dt = \int_0^L F^T(t) u(t) dt = : \prec F, u \succ_L,$$

where $F^T(t) := e^{A(L-t)}B$.

- The set \mathcal{R} of all reachable points is a linear (sub)space: if x_a and x_b are reachable, so is $\alpha x_a + \beta x_b$.
- If the reachable set is the entire state space, i.e., if *R* = ℝⁿ, then the system is called reachable.

Reachability Gramian

Theorem

Let $\mathcal{P}_L := \prec F, F \succ = \int_0^L F^T(t)F(t) dt$. Then,

 $\mathcal{R} = \operatorname{Ra}(\mathcal{P}_L).$

- Prove that $\mathcal{R} \subseteq \operatorname{Ra}(\mathcal{P}_L)$, i.e., $\mathcal{R}^{\perp} \supseteq \operatorname{Ra}^{\perp}(\mathcal{P}_L)$.
- $q^T \mathcal{P}_L = 0 \Rightarrow q^T \mathcal{P}_L q = 0 \Leftrightarrow \prec Fq, Fq \succ = 0 \Leftrightarrow q^T F^T(t) = 0 \Rightarrow q^T x(L) = 0$ (i.e., if $q \in \operatorname{Ra}^{\perp}(\mathcal{P}_L)$, then $q \in \mathcal{R}^{\perp}$.)
- Now prove that $\mathcal{R} \supseteq \operatorname{Ra}(\mathcal{P}_L)$: let α be such that $x_d = \mathcal{P}_L \alpha$, and pick $u(t) = F(t)\alpha$. Then

$$x(L) = \int_0^L F^{\mathsf{T}}(t)F(t)\alpha \ dt = \mathcal{P}_L \alpha = x_d.$$

(日) (同) (三) (三)

Reachability Matrix

Theorem

$$\operatorname{Ra}(\mathcal{P}_L) = \operatorname{Ra}\left([A^{n-1}B|\ldots|AB|B]\right) = \operatorname{Ra}(R_m).$$

•
$$q^T \mathcal{P}_L = 0 \Rightarrow q^T e^{A(L-t)} B = 0 \Rightarrow q^T R_n = 0$$

- $q^T R_n \Leftrightarrow q^T A^I B = 0, \forall I \in \mathbb{N} \Rightarrow q^T(t) e^{A(L-t)} B = 0 \forall t \in \mathbb{R} \Rightarrow q^T \mathcal{P}_L = 0.$
- The system is reachable iff the rank of R_n is equal to n.
- Notice that this condition does not depend on L!
- Reachability vs. Controllability: a state x_d is controllable if one can find a control input u such that

$$e^{AL}x_d + \prec F, u \succ_L = 0.$$

This is equivalent to $x_d = e^{-AL} \prec F$, $u \succ_L$, i.e., controllability and reachability coincide for CT systems. (They do not coincide for DT systems, e.g., is the matrix A is not invertible.)

(日)

Computation of the reachability Gramian

• Recall the definition of the reachability Gramian at time L:

$$\mathcal{P}_L := \int_0^L e^{A(L-t)} B B^T e^{A(L-t)^T} dt = \int_0^L e^{A\tau} B B^T e^{A^T \tau} d\tau$$

• Recall that the range does not depend on *L*. In particular, assuming the system is stable (i.e., all eigenvalues of *A* are in the open left half plane), one can consider $L \to +\infty$, and define

$$\mathcal{P} := \lim_{L \to +\infty} \mathcal{P}_L = \int_0^{+\infty} e^{A\tau} B B^T e^{A^T \tau} d\tau$$

Computation of the reachability Gramian

Theorem

The reachability Gramian satisfies the Lyapunov equation

$$A\mathcal{P} + \mathcal{P}A^{\mathsf{T}} = -BB^{\mathsf{T}}.$$

•
$$\int_0^\infty \frac{d}{dt} \left(e^{At} B B^T e^{A^T t} \right) dt = -B B^T$$

•
$$\int_0^\infty \frac{d}{dt} \left(e^{At} B B^T e^{A^T t} \right) dt = A \mathcal{P} + \mathcal{P} A^T.$$

・ロト ・日子・ ・ 田子・ ・

Canonical forms

• Consider the similarity transformation $AR = R\overline{A}$, $b = R\overline{b}$.

• Using Cayley-Hamilton, we get

$$\bar{A} = \begin{bmatrix} -a_{n-1} & 1 & 0 & \dots \\ -a_{n-2} & 0 & 1 & \dots \\ \dots & & & \\ -a_0 & 0 & 0 & \dots \end{bmatrix}, \qquad \bar{b} = \begin{bmatrix} 0 \\ 0 \\ ldots \\ 1 \end{bmatrix},$$

called the controllability form.

• A similar transformation can be used to take the system to the controller canonical form...

Observability

• Given a system described by the (n-dimensional) state-space model

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t),$$

a state $x_q \neq 0$ is said unobservable over [0, L], if for every input u, the output y_q obtained with initial condition $x(0) = x_q$ is the same as the output y_0 obtained with initial condition x(0) = 0.

- A dynamic system is said unobservable if it contains at least an unobservable state, observable otherwise.
- Note that observability can be established assuming zero input.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Continuous-time observability

- For continuous-time systems, the following are equivalent:
 - x_q is unobservable in time L
 - x_q is unobservable in any time.

•
$$O_n x_q = \begin{bmatrix} C \\ CA \\ \\ \\ CA^{n-1} \end{bmatrix} x_q = 0.$$

- 1) \Rightarrow 2): if x_q unobservable in time L, then for u = 0 y = 0, i.e., $Ce^{At}x_q = 0$ for all $t \in [0, L]$. hence, $Ce^{A\cdot 0}x_q = 0$, $d/dtCe^{At}x_q|_{t=0} = CAx_q = 0$... which implies that $Ce^{At}x_q = 0$ for all t > L as well.
- 2) \Rightarrow 1): immediate

• 2) \Leftrightarrow 3): Cayley-Hamilton implies that $\operatorname{Null} O_n = \operatorname{Null} \begin{bmatrix} C \\ CA \\ \\ \\ \\ CA'^{-1} \end{bmatrix}$ for all l > n.

(日) (部) (E) (E) (E)

Observability Gramian

• Define the observability Gramian at time L:

$$\mathcal{Q}_L := \int_0^L e^{A^T (L-t)} C^T C e^{A(L-t)} dt = \int_0^L e^{A^T \tau} C^T C e^{A\tau} d\tau$$

• Recall that observability does not depend on *L*. In particular, assuming the system is stable (i.e., all eigenvalues of *A* are in the open left half plane), one can consider $L \rightarrow +\infty$, and define

$$\mathcal{Q} := \lim_{L \to +\infty} \mathcal{Q}_L = \int_0^{+\infty} e^{A^T \tau} C^T C e^{A \tau} d\tau$$

Theorem

The observability Gramian satisfies the Lyapunov equation

$$A^T \mathcal{Q} + \mathcal{Q} A = -C^T C.$$

E. Frazzoli (MIT)

(日)

other results

- Essentially, observability results are similar to their reachability counterparts, when considering (A^{T}, C^{T}) as opposed to (A, B). In particular,
- (A, C) is unobservable if $Cv_i = 0$ for some (right) eigenvector v_i of A. $y(t) = C \sum i = 1^n e^{\lambda_i t} v_i w_i^T x(0)$
- (A, C) is unobservable if $\begin{bmatrix} sI A \\ C \end{bmatrix}$ drop ranks for some $s = \lambda$, this λ is an unobservable eigenvalue for the system.
- The dual of controllability to the origin is "constructability": same considerations as in the reachability/controllability case hold.

MIT OpenCourseWare http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.